Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SARM1 is a key regulator of a conserved program of axon degeneration increasingly linked to human neurodegenerative diseases. Pathological SARM1 activation causes rapid NAD consumption, disrupting cellular homeostasis and leading to axon degeneration. In this study, we develop antisense oligonucleotides (ASOs) targeting human SARM1, demonstrating robust neuroprotection against morphological, metabolic, and mitochondrial impairment in human iPSC-derived dopamine neurons induced by the lethal neurotoxin vacor, a potent SARM1 activator. Furthermore, our findings reveal that axon fragmentation can be prevented, and mitochondrial dysfunction reversed using the NAD precursor nicotinamide, a form of vitamin B, even after SARM1 activation has occurred, when neurons are already unhealthy. This research identifies ASOs as a promising therapeutic strategy to block SARM1, and provides an extensive characterisation and further mechanistic insights that demonstrate the reversibility of SARM1 toxicity in human neurons. It also identifies the SARM1 activator vacor as a specific and reversible neuroablative agent in human neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617922PMC
http://dx.doi.org/10.1016/j.nbd.2025.106986DOI Listing

Publication Analysis

Top Keywords

sarm1 activation
12
human neurons
12
sarm1
9
mitochondrial dysfunction
8
antisense oligonucleotides
8
axon degeneration
8
sarm1 activator
8
human
6
neurons
5
activation induces
4

Similar Publications

SARM1 activation promotes axonal degeneration via a two-step phase transition.

Nat Chem Biol

August 2025

Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.

SARM1 is a key executioner of axonal degeneration, acting through NAD⁺ depletion by NADase activity of its TIR domain. Although normally autoinhibited, SARM1 becomes activated in response to axonal damage; however, the underlying mechanism remains unclear. Here, using a class of pyridine-containing compounds that trigger SARM1-dependent axon degeneration, we uncover a two-step activation process.

View Article and Find Full Text PDF

Glioblastoma (GBM) is an aggressive and highly therapy-resistant brain tumour. Although advanced disease has been intensely investigated, the mechanisms that underpin the earlier, likely more tractable, stages of GBM development remain poorly understood. Here we identify axonal injury as a key driver of GBM progression, which we find is induced in white matter by early tumour cells preferentially expanding in this region.

View Article and Find Full Text PDF

Background: Charcot-Marie-Tooth (CMT) disease can be caused by mutations in over 100 different genes, most of which lead to demyelination (type 1) or degeneration (type 2) of peripheral motor and sensory axons. SARM1 is a protein involved in the active process of Wallerian degeneration after axonal injury. Inhibition of SARM1 protects against axon degeneration following injury or in cases such as chemotherapy-induced peripheral neuropathy.

View Article and Find Full Text PDF

Background: Degeneration of peripheral motor and sensory axons is a key aspect of the pathophysiology of Charcot-Marie-Tooth disease and related inherited neurodegenerative conditions.

Aims: Given that mutations in many (> 100) genes can cause these disorders, it is unclear if a generalized therapeutic strategy can be identified that will apply across these disease subtypes; however, strategies to prevent or slow axon degeneration are attractive candidates. Wallerian axon degeneration is an active process following insults such as nerve injury, and SARM1 is a central mediator of this process.

View Article and Find Full Text PDF

Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a nicotinamide adenine dinucleotide (NAD) hydrolase involved in axonal degeneration and neuronal cell death. SARM1 plays a pivotal role in triggering the neurodegenerative processes that underlie peripheral neuropathies, traumatic brain injury, and neurodegenerative diseases. Importantly, SARM1 knockdown or knockout prevents the degeneration; as a result, SARM1 has been attracting attention as a potent therapeutic target.

View Article and Find Full Text PDF