Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cells must limit RNA-RNA interactions to avoid irreversible RNA entanglement. Cells may prevent deleterious RNA-RNA interactions by genome organization to avoid complementarity however, RNA viruses generate long, perfectly complementary antisense RNA during replication. How do viral RNAs avoid irreversible entanglement? One possibility is RNA sequestration into biomolecular condensates. To test this, we reconstituted critical SARS-CoV-2 RNA-RNA interactions in Nucleocapsid condensates. We observed that RNAs with low propensity RNA-RNA interactions resulted in more round, liquid-like condensates while those with high sequence complementarity resulted in more heterogeneous networked morphology independent of RNA structure stability. Residue-resolution molecular simulations and direct sequencing-based detection of RNA-RNA interactions support that these properties arise from degree of trans RNA contacts. We propose that extensive RNA-RNA interactions in cell and viral replication are controlled via a combination of genome organization, timing, RNA sequence content, RNA production ratios, and emergent biomolecular condensate material properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12136198 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-6378534/v1 | DOI Listing |