Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: Periodontitis is a chronic inflammatory disease characterized by the progressive destruction of the tooth's supporting tissues, driven by complex interactions between periodontopathogenic bacteria, environmental factors, and the host immune response. MicroRNAs (miRNAs) have emerged as key modulators of inflammatory pathways and are increasingly recognized for their role in the pathogenesis of periodontitis. Their deregulation in this disease suggests potential therapeutic applications targeting miRNA expression. Natural compounds such as isodrimeninol, derived from (), may offer novel approaches to modulate miRNA activity due to their antiinflammatory properties. However, no studies have previously linked this sesquiterpene to miRNA regulation in periodontitis. This study investigates the effects of isodrimeninol on six miRNAs (miR-17-3p, miR-21-3p, miR-21-5p, miR-146a-5p, miR-155-5p, and miR-223-3p) associated with periodontitis using two cellular models.
Methods: Saos-2 cells (osteoblast-like cells) and periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs). Both cell types were stimulated with lipopolysaccharide (LPS) to induce inflammation and treated with isodrimeninol and resveratrol for comparison.
Results: Isodrimeninol reduced Interleukin-1beta (IL-1β) and Interleukin-6 (IL-6) gene expression and caused differential expression patterns of the miRNAs examined, upregulating miR-146a-5p and miR-223-3p, while downregulating miR-17-3p, miR-21-3p, miR-21-5p, and miR-155-5p ( < 0.05).
Conclusion: These findings indicate a connection between miRNAs, periodontitis, and the regulation of inflammation by isodrimeninol, providing potential opportunities for the treatment. However, further validation is needed to confirm these results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133741 | PMC |
http://dx.doi.org/10.3389/froh.2025.1489823 | DOI Listing |