Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The Ubiquitin-like protein FUBI is encoded in humans by the FAU gene, whose down-regulation in prostate, ovarian and breast cancer is significantly associated with poor prognosis. Despite its implications in disease progression, the regulatory mechanisms orchestrated by FUBI remain elusive. To address this knowledge gap, a linear synthetic platform is developed to generate FUBI chemical tools, enabling the site-specific incorporation of unnatural building blocks and the introduction of fluorophores, tags, and reactive warheads. Using this platform, activity-based probes are created for FUBI conjugation and deconjugation enzymes, validating them in cell lysate-based assays and proteomics. Additionally, a triazole-linked Di-FUBI is synthesized to investigate FUBI chain modulators. Among the proteomics hits, IMPDH1 and the deubiquitinase UCHL3 are identified as novel Di-FUBI specific interactors. Further characterization revealed that Di-FUBI inhibits UCHL3 cleavage activity in a concentration-dependent manner, suggesting a novel regulatory interplay between UCHL3 and FUBI. Collectively, these tools demonstrate the versatility of the synthetic FUBI platform, advancing the characterization of FUBI-related enzymes in the ongoing efforts to decipher the complex code of ubiquitin-like signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278349 | PMC |
http://dx.doi.org/10.1002/cbic.202500321 | DOI Listing |