Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Brugada syndrome (BrS) is a serious condition linked to sudden cardiac death in individuals who are otherwise healthy. Notably, drug-induced BrS accounts for 50% to 70% of all documented cases. The utilization of artificial intelligence (AI) models in the analysis of electrocardiograms (ECGs) represents a promising approach for the detection of BrS.
Purpose: This meta-analysis aims to evaluate the effectiveness of AI models in diagnosing BrS through ECG analysis.
Methods: We conducted a systematic search across PubMed, Embase, and Cochrane databases, focusing on AI-based models for ECG analysis related to BrS detection. Key outcomes measured included sensitivity, specificity, and the summary receiver operating characteristic (SROC) curve. Pooled proportions were calculated using a random-effects model with 95% confidence intervals (CIs), and heterogeneity was using Zhou and Dendukuri I approach. Additionally, a leave-one-out sensitivity analysis was performed to evaluate the impact of each one of the included studies on the pooled results and heterogeneity. All statistical analyses were conducted using R version 4.4.2.
Results: Our analysis included six studies encompassing ECG data from 2,179 patients, all employing AI algorithms for ECG interpretation. The quantitative analysis revealed an area under the curve (AUC) of 0.898, a sensitivity of 78.9% (95% CI: 69.6 to 85.9), and a specificity of 87.7% (95% CI: 79.9 to 92.7). Notably, the sensitivity analysis without Zanchi et al., significantly reduced the heterogeneity (I = 0%). However, the other analyses corroborated with our general findings.
Conclusion: AI-driven ECG interpretation demonstrates to be a viable option in detecting BrS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10840-025-02075-y | DOI Listing |