Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Biphenylene, a recently synthesized graphene allotrope, has demonstrated potential for pollutant adsorption and sensing applications. In this study, we investigate the interactions between biphenylene and three chlorinated aliphatic hydrocarbons: dichloroethylene, trichloromethane, and tetrachloroethylene, utilizing density functional theory calculations. Geometrical analysis shows that all complexes exhibit interaction distances above 3.3 Å, indicating physisorption governed by van der Waals forces. The complex with tetrachloroethylene exhibits the strongest interaction (adsorption energy of -0.48 eV) due to π-π stacking, while the systems with trichloromethane and dichloroethylene exhibit weaker adsorption (-0.30 eV and -0.35 eV, respectively). Solvent effects slightly diminish adsorption stability by up to ∼6 %. Electronic analysis reveals that biphenylene retains its intrinsic properties upon complexation, with minimal changes in the HOMO-LUMO gap (1.00 eV) and chemical potential (-3.92 eV). However, the dipole moment increases significantly (up to 1.40 D for the trichloromethane complex), enhancing solubility. Rapid recovery times for the complexes with trichloromethane (1.33 × 10 s) and dichloroethylene (8.41 × 10 s) suggest excellent sensing capabilities, while the tetrachloroethylene system's longer desorption time (1.42 × 10 s) indicates potential for pollutant adsorption. These findings highlight biphenylene as a promising material for environmental applications, including the sensing and removal of chlorinated pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2025.109099 | DOI Listing |