98%
921
2 minutes
20
The present study investigated the expression of miR-598 in both breast cancer tissues and cells. Overexpression systems were established by introducing miR-598 mimics and pcDNA- Fibroblast Growth Factor Receptor 2(FGFR2) plasmids, either individually or in combination, into breast cancer cells. Four groups were constituted for probing purposes: control group, miR-598 mimics group, pcDNA-FGFR2 group, and mimics+FGFR2 group. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to measure the expression of miR-598 and FGFR2. Furthermore, bioinformatics software was used to predict and identify the possible binding sites between miR-598 and FGFR2. To validate the predicted binding sites, a dual-luciferase reporter gene experiment was carried out. A clone formation assay was used to evaluate cell proliferation, while glucose consumption and lactic acid production assays were conducted using a kit. Moreover, Western blot analysis was done to ascertain the expression of Bcl-2, Bax, Caspase-3, and Caspase-9 proteins. The expression of miR-598 in breast cancer tissues and cell lines was found to be significantly lower than that in normal breast tissues and cell lines, respectively (P < 0.05). It was also revealed that FGFR2 is the target gene of miR-598 and there is an inverse correlation between the two. Overexpression of miR-598 led to a decrease in clonal formation rate caused by high FGFR2 levels. Moreover, the overexpression of miR-598 reversed the effects induced by high FGFR2 levels, such as increased mitochondrial membrane potential and reduced expression of apoptosis-associated proteins. The microRNA miR-598 has been found to decrease the proliferation of breast cancer cells by targeting FGFR2, inducing apoptosis, and suppressing glucose consumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1615/CritRevImmunol.2025054378 | DOI Listing |
Stem Cell Rev Rep
September 2025
Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France.
Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.
View Article and Find Full Text PDFAnn Surg Oncol
September 2025
Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Ann Surg Oncol
September 2025
Department of Surgery, Division of Surgical Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
Ann Surg Oncol
September 2025
Department of General Surgery, Abdulkadir Yuksel State Hospital, Gaziantep, Turkey.
Breast Cancer Res Treat
September 2025
Department of Pharmacy, Duke University Hospital, Durham, NC, USA.
Purpose: Limited data is available assessing sequencing of antibody drug conjugates (ADCs) in patients with hormone receptor-positive (HR +), human epidermal growth factor 2 (HER2)-negative, HER2-low, and triple-negative metastatic breast cancer (MBC), including patients with brain metastases (BrM) or leptomeningeal disease (LMD). This study assesses the efficacy and safety of sequential sacituzumab govitecan (SG) and trastuzumab deruxtecan (T-DXd) in MBC and impact on chemotherapy (CTX).
Methods: This is a single-center, retrospective, cohort study in adult patients with HR + , HER2-negative, or low MBC who received T-DXd and/or SG.