Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The direct confirmation of the cause-and-effect association between biogenic DMS emissions and the formation of DMS-derived aerosols is challenging because of the complex atmospheric processes involved. Here, we used decade-long field observations and a source-receptor model to pinpoint the key processes controlling the formation of biogenic sulfur aerosols in the Arctic. Our results revealed strong relationships between DMS, MSA, and subsequent new particle formation events during the phytoplankton growing periods. Notably, the efficiency of converting DMS into sulfur particles exhibited substantial variability across various ocean-ice regimes and seasons, depending on atmospheric OH and BrO levels driven by solar radiation and first-year sea ice, respectively. As the Arctic Ocean warms, phytoplankton blooms and the extent of younger sea ice intensifies, leading to increased emissions of DMS and its oxidants into the atmosphere. These combined factors could accelerate biogenic sulfur particle formation, thereby influencing cloud properties and radiative impacts in a warming Arctic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2025.122024DOI Listing

Publication Analysis

Top Keywords

particle formation
12
biogenic sulfur
8
sea ice
8
formation
5
synergistic effects
4
effects oceanic
4
oceanic dimethyl
4
dimethyl sulfide
4
sulfide emissions
4
emissions atmospheric
4

Similar Publications

Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.

Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF

The pathogenesis of immune-mediated necrotizing myopathy: Progress and therapeutic implications.

Biomed Pharmacother

September 2025

Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. Electronic address:

Immune-mediated necrotizing myopathy (IMNM) is an emerging and severe form of myositis. Most patients experience persistent muscle weakness or recurrent attacks within their lifetime. The previous view suggests that autoimmune and complement activation play a key role in muscle damage, and aggressive immunotherapy may benefit patients.

View Article and Find Full Text PDF

Plastics degradation generates microplastics (MPs), posing a risk to soil function and organisms. Currently, the impact of MPs derived from different polymers remains poorly understood. In this study, the effects of three polymers (polypropylene (PP), polylactic acid (PLA), and polybutylene adipate terephthalate (PBAT)) were investigated at environmentally relevant levels (0, 0.

View Article and Find Full Text PDF