A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Injectable hydrogel-based drug formulation for enhancing tertiary lymphoid structure formation and cancer immunotherapy efficacy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tertiary lymphoid structures (TLSs) in the tumor microenvironment are associated with improved cancer prognosis and enhanced immune checkpoint blockade (ICB) responses. In this study, an injectable hydrogel-based drug formulation is developed to stimulate TLSs formation in a B16-OVA melanoma mouse model. A hydrogel, termed HA-CPP⸦CB[8], is formed by supramolecular interactions between 4-(4-chlorophenyl)pyridine modified hyaluronic acid (HA-CPP) and cucurbit[8]uril (CB[8]). The results reveal that a single injection of HA-CPP⸦CB[8] hydrogel containing the CXCL13 chemokine and LIGHT cytokine effectively increases TLSs density, facilitates mature TLSs formation, suppresses tumor growth, and extends survival. Importantly, the hydrogel treatment also up-regulates the number of antigen-specific T-cells in the secondary lymphoid organs. Furthermore, combination of the hydrogel-based drug formulation and the anti-PD1 ICB therapy results in increased tumor suppression, improved survival rates, and strengthened TLSs formation, ultimately contributing to B16-OVA melanoma eradication. In conclusion, this study demonstrates the potential application of hydrogel-based drug carriers as synthetic immune niche scaffolds for promoting mature-like TLSs formation within the B16-OVA melanoma tumor microenvironment, offering a promising strategy for advancing tumor immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2025.113897DOI Listing

Publication Analysis

Top Keywords

hydrogel-based drug
16
tlss formation
16
drug formulation
12
b16-ova melanoma
12
injectable hydrogel-based
8
tertiary lymphoid
8
tumor microenvironment
8
formation b16-ova
8
tlss
6
formation
5

Similar Publications