98%
921
2 minutes
20
Quantifying protein turnover is fundamental to understanding cellular processes and advancing drug discovery. Multiplex-DIA mass spectrometry (MS), combined with dynamic SILAC labeling (pulse-SILAC, or pSILAC) reliably measures protein turnover and degradation kinetics. Previous multiplex-DIA-MS workflows have employed various strategies including leveraging the highest isotopic labeling channels to enhance the detection of isotopic signal pairs. Here we present a robust workflow that integrates a machine learning algorithm and channel-specific statistical filtering, enabling dynamic adaptation to channel ratio changes across multiplexed experiments and enhancing both coverage and accuracy of protein turnover profiling. We also introduce KdeggeR, a data analysis tool optimized for pSILAC-DIA experiments, which determines and visualizes peptide and protein degradation profiles. Our workflow is broadly applicable, as demonstrated on 2-channel and 3-channel DIA datasets and across two MS platforms. Applying this framework to an aneuploid cancer cell model before and after cisplatin resistance, we uncover strong proteome buffering of key protein complex subunits encoded by the aneuploid genome mediated by protein degradation. We identify resistance-associated turnover signatures, including mitochondrial metabolic adaptation via accelerated degradation of respiratory complexes I and IV. Our approach provides a powerful platform for high-throughput, quantitative analysis of proteome dynamics and stability in health and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125295 | PMC |
http://dx.doi.org/10.1038/s41467-025-60319-x | DOI Listing |
Curr Biol
September 2025
Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; Braunschweig Integrated Centre
Dynamic actin filament remodeling is crucial for a plethora of fundamental cell biological processes, ranging from cell division and migration to cell communication, intracellular trafficking, or tissue development. Cytochalasin B (CB) and D (CD) are fungal secondary metabolites frequently used for interference with such processes. Although they are generally assumed to block actin filament polymerization at their rapidly growing barbed ends and compete with regulators at these sites, precise molecular understanding of their effects in dynamic actin structures requires further study.
View Article and Find Full Text PDFBiophys J
September 2025
Department of Bionanoscience and Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629 HZ, The Netherlands. Electronic address:
Plectin is a giant protein of the plakin family that crosslinks the cytoskeleton of mammalian cells. It is expressed in virtually all tissues and its dysfunction is associated with various diseases such as skin blistering. There is evidence that plectin regulates the mechanical integrity of the cytoskeleton in diverse cell and tissue types.
View Article and Find Full Text PDFMol Plant
September 2025
Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, USA. Electronic address:
The plant immune system relies on a precisely balanced interplay between activation and repression to effectively combat pathogens without incurring self-damage. The salicylic acid (SA) signaling pathway, a cornerstone of this system, is currently experiencing a research renaissance. Landmark studies have recently elucidated the complete enzymatic pathways for SA biosynthesis from both chorismate and phenylalanine (Liu et al.
View Article and Find Full Text PDFJ Lipid Res
September 2025
Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. Electronic address:
In an interplay with parenchymal cells of metabolically active organs such as heart and adipose tissues, vascular endothelial cells are important for the regulation of nutrient uptake and organ-specific energy metabolism. Based on high expression of the scavenger receptor B1 (SR-B1) in capillary endothelial cells of white and brown adipose tissue (BAT), we proposed a functional role for this receptor in lipid handling and adaptive thermogenesis. To address this hypothesis, we generated mice with an endothelial-specific knockout of SR-B1 and performed metabolic turnover and indirect calorimetry studies in response to environmental cues such as cold exposure and high fat diet feeding.
View Article and Find Full Text PDFThe exquisitely organized sarcomere, the unit of contraction of striated muscle, is a stable structure with slow turnover of its components. The myosin chaperone UNC-45 and its binding partners, Hsp90 and Hsp70, are required for the initial folding of the myosin head domain and the assembly of myosin into thick filaments. There is increasing evidence that the UNC-45 system has an important role during aging to preserve sarcomere organization.
View Article and Find Full Text PDF