Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Tide gauges provide a long observational record that can inform the nature of satellite-era basin-scale sea level trends. However, common signals must be extracted from geographically sparse records. Here, by applying low-frequency component analysis (LFCA) to tide gauge records and surface climate reconstructions, we isolate three coherent modes of Pacific Ocean variability that we ascribe to: a secular, greenhouse gas-driven climate change (LFC1); a nonlinear mode of variability with a reversal around 1980, potentially linked to aerosols (LFC2); and the Interdecadal Pacific Oscillation (LFC3). Although sea level trend patterns reflect the superimposed contribution of all modes, satellite-era trends are dominated by an increasing phase of LFC2: They are thus potentially unrepresentative of both longer-term historical patterns and those expected in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12124387 | PMC |
http://dx.doi.org/10.1126/sciadv.adw3661 | DOI Listing |