Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Active surveillance (AS) using repeated biopsies to monitor disease progression has been a popular alternative to immediate surgical intervention in cancer care. However, a biopsy procedure is invasive and sometimes leads to severe side effects of infection and bleeding. To reduce the burden of repeated surveillance biopsies, biomarker-assistant decision rules are sought to replace the fix-for-all regimen with tailored biopsy intensity for individual patients. Constructing or evaluating such decision rules is challenging. The key AS outcome is often ascertained subject to interval censoring. Furthermore, patients will discontinue participation in the AS study once they receive a positive surveillance biopsy. Thus, patient dropout is affected by the outcomes of these biopsies. This work proposes a non-parametric kernel-based method to estimate a tailored AS strategy's true positive rates (TPRs) and true negative rates (TNRs), accounting for interval censoring and immediate dropouts. We develop a weighted classification framework based on these estimates to estimate the optimally tailored AS strategy and further incorporate the cost-benefit ratio for cost-effectiveness in medical decision-making. Theoretically, we provide a uniform generalization error bound of the derived AS strategy, accommodating all possible trade-offs between TPRs and TNRs. Simulation and application to a prostate cancer surveillance study show the superiority of the proposed method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123698 | PMC |
http://dx.doi.org/10.1093/biomtc/ujaf067 | DOI Listing |