A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Estimating optimally tailored active surveillance strategy under interval censoring. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Active surveillance (AS) using repeated biopsies to monitor disease progression has been a popular alternative to immediate surgical intervention in cancer care. However, a biopsy procedure is invasive and sometimes leads to severe side effects of infection and bleeding. To reduce the burden of repeated surveillance biopsies, biomarker-assistant decision rules are sought to replace the fix-for-all regimen with tailored biopsy intensity for individual patients. Constructing or evaluating such decision rules is challenging. The key AS outcome is often ascertained subject to interval censoring. Furthermore, patients will discontinue participation in the AS study once they receive a positive surveillance biopsy. Thus, patient dropout is affected by the outcomes of these biopsies. This work proposes a non-parametric kernel-based method to estimate a tailored AS strategy's true positive rates (TPRs) and true negative rates (TNRs), accounting for interval censoring and immediate dropouts. We develop a weighted classification framework based on these estimates to estimate the optimally tailored AS strategy and further incorporate the cost-benefit ratio for cost-effectiveness in medical decision-making. Theoretically, we provide a uniform generalization error bound of the derived AS strategy, accommodating all possible trade-offs between TPRs and TNRs. Simulation and application to a prostate cancer surveillance study show the superiority of the proposed method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123698PMC
http://dx.doi.org/10.1093/biomtc/ujaf067DOI Listing

Publication Analysis

Top Keywords

interval censoring
12
optimally tailored
8
active surveillance
8
decision rules
8
surveillance
5
estimating optimally
4
tailored
4
tailored active
4
surveillance strategy
4
strategy interval
4

Similar Publications