A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Diagnosis of trigeminal neuralgia based on plain skull radiography using convolutional neural network. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to determine whether trigeminal neuralgia can be diagnosed using convolutional neural networks (CNNs) based on plain X-ray skull images. A labeled dataset of 166 skull images from patients aged over 16 years with trigeminal neuralgia was compiled, alongside a control dataset of 498 images from patients with unruptured intracranial aneurysms. The images were randomly partitioned into training, validation, and test datasets in a 6:2:2 ratio. Classifier performance was assessed using accuracy and the area under the receiver operating characteristic (AUROC) curve. Gradient-weighted class activation mapping was applied to identify regions of interest. External validation was conducted using a dataset obtained from another institution. The CNN achieved an overall accuracy of 87.2%, with sensitivity and specificity of 0.72 and 0.91, respectively, and an AUROC of 0.90 on the test dataset. In most cases, the sphenoid body and clivus were identified as key areas for predicting trigeminal neuralgia. Validation on the external dataset yielded an accuracy of 71.0%, highlighting the potential of deep learning-based models in distinguishing X-ray skull images of patients with trigeminal neuralgia from those of control individuals. Our preliminary results suggest that plain x-ray can be potentially used as an adjunct to conventional MRI, ideally with CISS sequences, to aid in the clinical diagnosis of TN. Further refinement could establish this approach as a valuable screening tool.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122693PMC
http://dx.doi.org/10.1038/s41598-025-03254-7DOI Listing

Publication Analysis

Top Keywords

trigeminal neuralgia
20
skull images
12
images patients
12
based plain
8
convolutional neural
8
plain x-ray
8
x-ray skull
8
neuralgia
5
images
5
dataset
5

Similar Publications