Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: The gut microbiome has emerged as a key regulator of response to cancer immunotherapy. However, a better understanding of the underlying mechanisms by which the microbiome influences immunotherapy is needed to identify strategies to optimize outcomes. To this end, we developed a mathematical model to obtain insights into the effect of the microbiome on the immune system and immunotherapy response. This model was based on (i) gut microbiome data derived from preclinical studies, (ii) mathematical modeling of the antitumor immune response, (iii) association analysis of microbiome profiles with model-predicted immune profiles, and (iv) statistical models that correlate model parameters with the microbiome. The model was used to investigate the complexity of murine and human studies on microbiome modulation. Comparison of model predictions with experimental observations of tumor response in the training and test datasets supported the hypothesis that two model parameters, the activation and killing rate constants of immune cells, are the most influential in tumor progression and are potentially affected by microbiome composition. Evaluation of the associations between the gut microbiome and immune profile indicated that the components and structure of the gut microbiome affect the activation and killing rate of adaptive and innate immune cells. Overall, this study contributes to a deeper understanding of microbiome-cancer interactions and offers a framework for understanding how microbiome interactions influence cancer treatment outcomes.

Significance: Integration of mathematical modeling and microbiome data reveals how gut microbiome components impact immune response, providing insights to optimize immunotherapy strategies. This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12355177PMC
http://dx.doi.org/10.1158/0008-5472.CAN-24-2232DOI Listing

Publication Analysis

Top Keywords

gut microbiome
24
microbiome
14
mathematical modeling
12
association analysis
8
cancer immunotherapy
8
microbiome immune
8
microbiome data
8
immune response
8
model parameters
8
activation killing
8

Similar Publications

Parity influences on the infant gut microbiome development: a longitudinal cohort study.

Gut Microbes

December 2025

Clinical Microbiome Unit, Laboratory of Host Immunity and Microbiome, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD, USA.

Parity, the number of pregnancies carried beyond 20 weeks, influences the maternal gut microbiome. However, whether parity modulates the infant microbiome longitudinally remains underexplored. To address this, 746 infants in a longitudinal cohort study were assessed.

View Article and Find Full Text PDF

Metabolic consequences and gut microbiome alterations in rats consuming pork or a plant-based meat analogue.

Food Funct

September 2025

Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.

It is unknown how human health is affected by the current increased consumption of ultra-processed plant-based meat analogues (PBMA). In the present study, rats were fed an experimental diet based on pork or a commercial PBMA, matched for protein, fat, and carbohydrate content for three weeks. Rats on the PBMA diet exhibited metabolic changes indicative of lower protein digestibility and/or dietary amino acid imbalance, alongside increased mesenteric (+38%) and retroperitoneal (+20%) fat depositions despite lower food and energy intake.

View Article and Find Full Text PDF

Periprosthetic joint infection: Time to think outside the box.

Knee Surg Sports Traumatol Arthrosc

September 2025

International Joint Center, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey.

Despite undisputed success of orthopaedic procedures, surgical site infections (SSI) such as periprosthetic joint infection (PJI) continues to compromise the outcome and result in major clinical and economic burden. The overall rate of infection is expected to rise in the future resulting in significant associated mortality and morbidity. Traditional concepts have largely attributed the source of PJI to exogenous pathogens.

View Article and Find Full Text PDF

The present investigation elucidates the therapeutic potential of glycyrrhizin, the predominant triterpene saponin isolated from (licorice), in the management of systemic lupus erythematosus (SLE), an autoimmune disorder characterized by multisystemic involvement and therapeutic recalcitrance. Comprehensive interrogation of multiple disease-specific databases facilitated the identification of crucial SLE-associated molecular targets and hub genes, with MAPK1, MAPK3, TP53, JUN, and JAK2 demonstrating the highest degree of network centrality. Subsequent molecular docking simulations and binding affinity assessments revealed compounds with exceptional complementarity to these pivotal molecular targets, establishing as a pharmacologically promising botanical source and glycyrrhizin as its principal bioactive constituent meriting comprehensive mechanistic investigation.

View Article and Find Full Text PDF