A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Load demand forecasting in air conditioning a rotor Hopfield neural network approach optimized by a new optimization algorithm. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Load demand forecasting is crucial for optimal energy management and sustaining comfortable indoor environments for air conditioning systems. The current research provides load demand prediction by a new modified rotor Hopfield neural network (RHNN) integrated with a fractional order of seasons optimization algorithm (FO-SOA) to overcome the challenge of predicting load demand. The RHNN extracts historical data patterning and predicts load demand prediction for future time using past data, and the FO-SOA includes infinitesimal calculus in its process to optimize its solution by considering repeating operation of honeybee agent and also extracting long-term memory operation without requiring additional memory access in the process to make it best at exploration/exploitation among optimization process. The model includes an incorporation model of key factors including ambient temperature, humidity, occupancy pattern, etc., for enhancing the reliability and the prediction accuracy. A case study validated the proposed RHNN/FO-SOA model and allowed for a comparison with several state-of-the-art methods, such as LSTM-based hybrid ensemble learning (LSTM/HEL), LSTM/RNN, deep neural networks (DNN), and deep learning models (DLM). The results showcase optimal performance, yielding an R value of 0.95, along with the lowest MSE, RMSE, and MAE values when compared to the other tested models. A correction coefficient increased the goodness of fit from 0.77 to 0.85. The RHNN/FO-SOA method may contribute to improve energy performance and reduce costs in air conditioners, shown by the findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120120PMC
http://dx.doi.org/10.1038/s41598-025-02568-wDOI Listing

Publication Analysis

Top Keywords

load demand
20
demand forecasting
8
air conditioning
8
rotor hopfield
8
hopfield neural
8
neural network
8
optimization algorithm
8
demand prediction
8
load
5
forecasting air
4

Similar Publications