A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Design of circularly polarized phosphorescence materials guided by transfer learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It is highly desirable that artificial circularly polarized phosphorescent materials with high luminescence asymmetry factor (g), narrowband emission and tunable chiral phosphorescent performance can be constructed. Especially, precise control and simultaneous independent switching of circularly polarized fluorescent and phosphorescent performance for the same molecules remain a formidable challenge. Herein, we propose a strategy to customized design of circularly polarized phosphorescent materials based on large language models and transfer learning methods, which not only enables efficient identification of suitable synthesis precursors, but also provides valuable guidance for experimental procedures. We demonstrate the significant advantages of transfer learning with limited chemical data, and precisely fabricate films with high g (1.86), narrow full-width at half-maximum (49 nm) and customized circularly polarized phosphorescent performance with targeted spectral position. The inverse customization of materials with user-specified circularly polarized fluorescent/phosphorescent performance can be achieved, favoring their application in multicolor display and multidimensional information encryption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119802PMC
http://dx.doi.org/10.1038/s41467-025-60310-6DOI Listing

Publication Analysis

Top Keywords

circularly polarized
24
transfer learning
12
polarized phosphorescent
12
phosphorescent performance
12
design circularly
8
phosphorescent materials
8
polarized
6
circularly
5
phosphorescent
5
polarized phosphorescence
4

Similar Publications