98%
921
2 minutes
20
The in vitro assessment of nutrient digestibility in aquaculture offers a fast, affordable, and ethical alternative enabling to optimize the nutritional value of feeds for improved fish health. Although commonly used in human studies, these in vitro models are still scarce for fish. This study aimed to validate an in vitro digestion method for marine fish using both fish crude digestive extracts and commercial digestive enzymes through a comparison with an in vivo assay using gilthead seabream (Sparus aurata) as a biological model. Additionally, the effects of temperature, digestion time and feed amount (enzyme-to-substrate [E:S] ratio) influenced the in vitro protein digestibility, either individually or through their interactions. Only commercial enzymes lead to similar protein bioaccessibilities to those obtained in vivo (90.8 ± 1.7 %) under the following factorial design: i) 20 °C, 24 h, 250 mg of feed (88.1 ± 2.6 %); ii) 37 °C, 6 h, 136.5, 250 and 500 mg (85.9 ± 2.5 %, 90.1 ± 3.0 % and 87.4 ± 1.0 %, respectively); and iii) 37 °C, 24 h, 500 and 1000 mg (86.0 ± 2.1 %, 86.6 ± 5.2 %, respectively). The distinct action mechanisms of non-fish commercial enzymes seem to significantly enhance protein bioaccessibility compared to fish digestive extracts. Moreover, an optimal balance between temperature and digestion time plays a crucial role in maximizing digestibility, supporting efficient nutrient breakdown and absorption. The validated in vitro digestibility method using commercial enzymes for S. aurata provides a cost-effective, fast alternative and free of ethical constraints. We also propose a standardized E:S ratio to be applied in future studies using this methodology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2025.116554 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139.
The mutagenic translesion synthesis (TLS) pathway, which is critically dependent on REV1's ability to recruit inserter TLS polymerases and the POLζ extender polymerase, enables cancer cells to bypass DNA lesions while introducing mutations that likely contribute to the development of chemotherapy resistance and secondary malignancies. Targeting this pathway represents a promising therapeutic strategy. Here, we demonstrate that the expression of the C-terminal domain (CTD) of human REV1, a ca.
View Article and Find Full Text PDFAnn Acad Med Singap
August 2025
Division of Medical Oncology, National Cancer Centre Singapore, Singapore.
Introduction: Trastuzumab deruxtecan (T-DXd) has revolutionised treatment for metastatic breast cancer (MBC). While effective, its high cost and toxicities, such as fatigue and nausea, pose challenges.
Method: Medical records from the Joint Breast Cancer Registry in Singapore were used to study MBC patients treated with T-DXd (February 2021-June 2024).
J Proteome Res
September 2025
Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, United States.
Retinol binding protein 4 (RBP4), the circulating carrier of retinol, complexes with transthyretin (TTR) and is a potential biomarker of cardiometabolic disease. However, RBP4 quantitation relies on immunoassays and Western blots without retinol and TTR measurement. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous absolute quantitation of circulating RBP4 and TTR is critical to establishing their biomarker potential.
View Article and Find Full Text PDFSmall
September 2025
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of AI-Driven Zero-Carbon Technologies, Key Laboratory of New Low-carbon Green Chemical Technology Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China.
Sarcosine (Sar), a critical potential biomarker for prostate cancer (PCa), is primarily detected via enzyme cascade reactions involving sarcosine oxidase (SOx) and peroxidase. Nevertheless, the intermediate product hydrogen peroxide (HO) tends to diffuse to the bulk solution phase without entering subsequent reaction, leading to suboptimal detection sensitivity and compromised analytical performance. To tackle this challenge, a multilayered sandwich nanozyme cascade sensor (designated as Cu-MOF/Rf@BDC) is proposed through a confinement-mediated HO enrichment strategy.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.
Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.
View Article and Find Full Text PDF