A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Formation of spatial vegetation patterns in heterogeneous environments. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Functioning of many resource-limited ecosystems is facilitated through spatial patterns. Patterns can indicate ecosystems productivity and resilience, but the interpretation of a pattern requires good understanding of its structure and underlying biophysical processes. Regular patterns are understood to form autogenously through self-organization, for which exogenous heterogeneities are negligible. This has been corroborated by reaction-diffusion models which generate highly regular patterns in idealized homogeneous environments. However, such model-generated patterns are considerably more regular than natural patterns, which indicates that the concept of autogenous pattern formation is incomplete. Models can generate patterns which appear more natural when they incorporate exogenous random spatial heterogeneities (noise), such as microtopography or spatially varying soil properties. However, the mechanism through which noise influences the pattern formation has not been explained so far. Recalling that irregular patterns can form through stochastic processes, we propose that regular patterns can form through stochastic processes as well, where spatial noise is filtered through scale-dependent biophysical feedbacks. First, we demonstrate that the pattern formation in nonlinear reaction-diffusion models is highly sensitive to noise. We then propose simple stochastic processes which can explain why and how random exogenous heterogeneity influences the formation of regular and irregular patterns. Finally, we derive linear filters which reproduce the spatial structure and visual appearance of natural patterns well. Our work contributes to a more holistic understanding of spatial pattern formation in self-organizing ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118857PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324181PLOS

Publication Analysis

Top Keywords

pattern formation
16
patterns
12
regular patterns
12
stochastic processes
12
reaction-diffusion models
8
models generate
8
natural patterns
8
irregular patterns
8
patterns form
8
form stochastic
8

Similar Publications