A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Homology-feature-assisted quantification of fibrotic lesions in computed tomography images: a proof of concept for CT image feature-based prediction for gene-expression-distribution. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Computed tomography (CT) image is promising for diagnosing of interstitial idiopathic pneumonias (IIPs); however, quantification of IIPs lesions in CT images is required. This study aimed to quantitatively evaluate fibrotic lesions in CT images using homology-based image analysis.

Methods: We collected publicly available CT images comprising 47 fibrotic images and 36 non-fibrotic images. The homology-profile (HP) image analysis method provides b0 and b1 profiles, indicating the number of isolated components and holes in a binary image. We locally applied the HP method to the CT image and generated homology-based feature (HF) maps as resultant images. The collected images were randomly divided into the tuning dataset and the testing dataset. The cut-off value for classifying the HF map for fibrotic or non-fibrotic images was defined using receiver operating characteristic (ROC) analysis with the tuning dataset. This cut-off value was evaluated using the testing dataset with accuracy, sensitivity, specificity, and precision.

Results: We successfully visualized the quantification of fibrotic lesions in the HF map. The b0 HF map was more suitable for quantifying fibrotic lesions than b1. The mean cut-off value of the b0 HF map was 199, with all performances achieved at 1.0. Furthermore, the classification of the b0 HF map for fibrotic or lung cancer images achieved all maximum performances at 1.0.

Conclusion: This study demonstrated the feasibility of using the HF in quantitatively evaluating fibrotic lesions in CT images. Our proposed HP-based method can also be promising in quantifying the fibrotic lesions of patients with IIPs, which can be applicable to assist the diagnosis of IIPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350597PMC
http://dx.doi.org/10.1007/s11548-025-03428-8DOI Listing

Publication Analysis

Top Keywords

fibrotic lesions
24
lesions images
12
images
11
fibrotic
9
quantification fibrotic
8
computed tomography
8
non-fibrotic images
8
tuning dataset
8
testing dataset
8
dataset cut-off
8

Similar Publications