A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

GDF11 Alleviates Vascular Calcification in VitD-Overloaded Mice Through Inhibition of Inflammatory NF-κB Signal. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vascular calcification, an age-associated disorder, is a highly regulated biological process similar to bone formation. Growth differentiation factor 11 (GDF11), a secreted member of the transforming growth factor beta (TGF-β) superfamily, has been shown to act as an anti-aging factor in the brain, heart, skin, and skeletal muscle. Nevertheless, whether GDF11 affects vascular calcification and the underlying mechanisms remain unclear. In the present study, beta-glycerophosphate and calcium chloride-induced calcification of vascular smooth muscle cells (VSMCs) and a VitD-overloaded mouse model were used to investigate the role of GDF11 in vascular calcification. Our results revealed that the knockdown of GDF11 by siRNA promoted the calcification of rat VSMCs, whereas GDF11 treatment significantly reduced the calcification of human and rat VSMCs in vitro, as detected by alizarin red staining and calcium content assay. Similarly, GDF11 treatment reduced the expression of bone-related molecules including Runt-related transcription factor 2 (Runx2) and bone morphogenetic protein-2 (BMP2). Furthermore, ex vivo and in vivo studies confirmed the inhibitory effect of GDF11 on vascular calcification. Mechanistically, GDF11 treatment reduced the levels of NF-κB signaling molecules including NLRP3, phosphorylated p65, IL-6, and IL-1β in VSMCs. Additionally, GDF11 siRNA-induced VSMC calcification was repressed by NF-κB inhibitor PDTC treatment. Taken together, these findings suggest that GDF11 alleviates vascular calcification through inhibiting the NF-κB signal. Modulation of GDF11 may represent a therapeutic strategy for vascular calcification.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202500029RDOI Listing

Publication Analysis

Top Keywords

vascular calcification
28
gdf11
12
gdf11 vascular
12
gdf11 treatment
12
treatment reduced
12
calcification
11
gdf11 alleviates
8
vascular
8
alleviates vascular
8
nf-κb signal
8

Similar Publications