A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Investigating the Use of Electrooculography Sensors to Detect Stress During Working Activities. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To tackle work-related stress in the evolving landscape of Industry 5.0, organizations need to prioritize employee well-being through a comprehensive strategy. While electrocardiograms (ECGs) and electrodermal activity (EDA) are widely adopted physiological measures for monitoring work-related stress, electrooculography (EOG) remains underexplored in this context. Although less extensively studied, EOG shows significant promise for comparable applications. Furthermore, the realm of human factors and ergonomics lacks sufficient research on the integration of wearable sensors, particularly in the evaluation of human work. This article aims to bridge these gaps by examining the potential of EOG signals, captured through smart eyewear, as indicators of stress. The study involved twelve subjects in a controlled environment, engaging in four stress-inducing tasks interspersed with two-minute relaxation intervals. Emotional responses were categorized both into two classes (relaxed and stressed) and three classes (relaxed, slightly stressed, and stressed). Employing supervised machine learning (ML) algorithms-Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), and K-Nearest Neighbors (KNN)-the analysis revealed accuracy rates exceeding 80%, with RF leading at 85.8% and 82.4% for two classes and three classes, respectively. The proposed wearable system shows promise in monitoring workers' well-being, especially during visual activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115029PMC
http://dx.doi.org/10.3390/s25103015DOI Listing

Publication Analysis

Top Keywords

work-related stress
8
classes relaxed
8
relaxed stressed
8
three classes
8
investigating electrooculography
4
electrooculography sensors
4
sensors detect
4
stress
4
detect stress
4
stress working
4

Similar Publications