Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

HIV-1 integrase (IN), an essential viral protein that catalyzes integration, also influences non-integration functions such as particle production and morphogenesis. The mechanism by which non-integration functions are mediated is not completely understood. Several factors influence these non-integration functions, including the ability of IN to bind to viral RNA. INI1 is an integrase-binding host factor that influences HIV-1 replication at multiple stages, including particle production and particle morphogenesis. IN mutants defective for binding to INI1 are also defective for particle morphogenesis, similar to RNA-binding-defective IN mutants. Studies have indicated that the highly conserved Repeat (Rpt) 1, the IN-binding domain of INI1, structurally mimics TAR RNA, and that Rpt1 and TAR RNA compete for binding to IN. Based on the RNA mimicry, we propose that INI1 may function as a "place-holder" for viral RNA to facilitate proper ribonucleoprotein complex formation required during the assembly and particle morphogenesis of the HIV-1 virus. These studies suggest that drugs that target IN/INI1 interaction may lead to dual inhibition of both IN/INI1 and IN/RNA interactions to curb HIV-1 replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115661PMC
http://dx.doi.org/10.3390/v17050693DOI Listing

Publication Analysis

Top Keywords

tar rna
12
non-integration functions
12
particle morphogenesis
12
rna mimicry
8
influence non-integration
8
hiv-1 integrase
8
particle production
8
viral rna
8
hiv-1 replication
8
ini1
5

Similar Publications

In vivo self-assembled siRNAs ameliorate neurological pathology in TDP-43-associated neurodegenerative disease.

Brain

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Provincial Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Rege

Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge.

View Article and Find Full Text PDF

A single-cell, long-read, isoform-resolved case-control study of FTD reveals cell-type-specific and broad splicing dysregulation in human brain.

Cell Rep

September 2025

Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA. Electronic address:

Progranulin-deficient frontotemporal dementia (GRN-FTD) is a major cause of familial FTD with TAR DNA-binding protein 43 (TDP-43) pathology, which is linked to exon dysregulation. However, little is known about this dysregulation in glial and neuronal cells. Here, using splice-junction-covering enrichment probes, we introduce single-nuclei long-read RNA sequencing 2 (SnISOr-Seq2), targeting 3,630 high-interest genes without loss of precision, and complete the first single-cell, long-read-resolved case-control study for neurodegeneration.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV), an Arteriviridae family enveloped RNA virus, is a major swine pathogen. Using yeast transformation-associated recombination (TAR) cloning, we efficiently generated infectious PRRSV and GFP-expressing clones, identifying transcription-regulating sequences as essential for stable foreign gene expression. Screening SARS-CoV-2 antivirals showed potent inhibition by the multitarget drug ribavirin, the polymerase inhibitors remdesivir and its metabolite GS-441524.

View Article and Find Full Text PDF

Human coronavirus OC43 (HCoV-OC43) is an endemic "common cold" coronavirus widely used to study fundamental aspects of coronavirus biology and to test therapeutic interventions. Recently, we used a yeast-based reverse genetics strategy to create recombinant HCoV-OC43 and fluorescent reporter viruses. We assembled a DNA copy of the HCoV-OC43 genome from six linear dsDNA fragments and a linearized yeast centromeric plasmid/bacterial artificial chromosome (YCpBAC) vector in using transformation-associated recombination (TAR).

View Article and Find Full Text PDF

HIV-1 latency remains a major barrier to viral eradication, and the mechanisms underlying the maintenance of proviral transcriptional silencing are not yet fully understood. Argonaute (Ago) proteins are well known for their roles in post-transcriptional gene silencing through microRNA-mediated pathways, but their involvement in transcriptional regulation, particularly in the context of HIV-1 infection, remains poorly characterized. Here, we demonstrate that Ago1 represses HIV-1 promoter activity across diverse latency models, independently of microRNA biogenesis pathways.

View Article and Find Full Text PDF