Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The liver accounts for almost 95% of lipid metabolism in broilers and serves as a crucial metabolic organ. Stress, which occurs when broilers are exposed to a heated environment, inhibits liver metabolism, significantly impacting their growth. This experiment investigated the combination of GBE with TP to improve hepatic lipid metabolism in heat-stressed broiler chickens by inhibiting the AMPK/SREBP-1C/ACC pathway. Three hundred broilers were reared usually until 21 days and randomly divided into six groups, namely CON group, HS group, TP group (300 mg/kg), GBE100 group (GBE100 mg/kg + TP300 mg/kg), GBE300 group (GBE 300 mg/kg + TP 300 mg/kg), GBE600 (600 mg/kg + TP 300 mg/kg) groups, where the CON group was kept at 23 °C, and the HS group and the TP, GBE100, GBE300, and GBE600 groups of each medication group were kept at 35 ± 2 °C for 10 h per day. Liver and serum samples were extracted at 28 and 42 days of age, respectively. The results showed that, at 42 days of age, the GBE600 group exhibited significantly superior performance to the HS group in ADG, ADFI, and F/G ( < 0.01). Serum TG, TC, and LDL-C levels were significantly lower ( < 0.01), while HDL-C levels were significantly higher ( < 0.05). Additionally, the mRNA expression levels of LKB1, AMPK, SREBP-1C, and ACC were markedly reduced ( < 0.01). In contrast, the mRNA expression of HSL and CPT1A was significantly elevated ( < 0.01), indicating that the GBE600 was more effective in mitigating heat stress in broiler chickens at 42 days of age. It showed that the GBE600 was more effective in ameliorating heat stress in broilers at 42 days of age, thus providing an ethical basis for ameliorating the flocculation of hepatic lipid metabolism in heat-stressed broilers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115693PMC
http://dx.doi.org/10.3390/vetsci12050424DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
16
300 mg/kg
16
days age
16
metabolism heat-stressed
12
group
10
ampk/srebp-1c/acc pathway
8
heat-stressed broiler
8
hepatic lipid
8
broiler chickens
8
groups con
8

Similar Publications

Splenic erythrophagocytosis is regulated by ALX/FPR2 signaling.

Haematologica

September 2025

Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky,.

Maintaining a healthy pool of circulating red blood cells (RBCs) is essential for adequate perfusion, as even minor changes in the population can impair oxygen delivery, resulting in serious health complications including tissue ischemia and organ dysfunction. This responsibility largely falls to specialized macrophages in the spleen, known as red pulp macrophages, which efficiently take up and recycle damaged RBCs. However, questions remain regarding how these macrophages are acutely activated to accommodate increased demand.

View Article and Find Full Text PDF

An abdominal aortic aneurysm (AAA) is defined as a localized dilation of the abdominal aorta measuring at least 1.5 times its normal diameter. If left untreated, AAA can progress to a life-threatening condition.

View Article and Find Full Text PDF

RNF128 regulates the adaptive metabolic response to fasting by modulating PPARα function.

Cell Death Differ

September 2025

Graduate Institute of Physiology, College of Biomedical Sciences, National Defense Medical University, Taipei, Taiwan, Republic of China.

Peroxisome proliferator-activated receptor alpha (PPARα) is a crucial transcriptional factor that regulates fatty acid β-oxidation and ketogenesis in response to fasting. However, the mechanisms underlying PPARα function remain unclear. This study identified a novel PPARα-binding protein-RING finger protein 128 (RNF128)-that facilitates PPARα polyubiquitination, resulting in the degradation and suppression of PPARα function during fasting.

View Article and Find Full Text PDF

Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.

View Article and Find Full Text PDF