98%
921
2 minutes
20
Polyimides (PIs) are materials that are resistant to high temperatures and crucial for the manufacturing of films, fibers, coatings, and 3D-printed items. PIs are widely used as electrically insulating materials in electronics and electrical engineering. This study investigated how the chemical structure (i.e., choice of initial monomers), the synthesis conditions of the prepolymer (i.e., choice of amide solvent), and the conditions for forming polyimide films (i.e., final curing temperature) affect the thermophysical properties and short-term electrical strength of obtained polyimide films of different chemical structures. In this work, we varied the compositions of the dianhydrides used for synthesizing polyamic acids-pyromellitic acid (PMDA), tetracarboxylic acid diphenyl oxide (ODPA) and 1,3-bis(3',4-dicarboxyphenoxy)benzene acid (R)-with a constant diamine: 4,4'-oxydianiline (ODA). Additionally, we varied the amide solvents employed: ,-dimethylacetamide (DMAc), ,-dimethylformamide (DMF), and -methyl-2-pyrrolidone (NMP). This study represents the first investigation into how the choice of solvent in the synthesis of thermoplastic polyimide prepolymers affects their short-term electrical strength. The molecular weights of the polyamic acids were determined using gel permeation chromatography (GPC). The deformation and strength characteristics of the investigated films were also assessed. The thermophysical properties of the polyimides were evaluated via dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). X-ray diffraction analysis and infrared spectroscopy (IR) were conducted on the examined film samples. The short-term electrical strength was also evaluated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115213 | PMC |
http://dx.doi.org/10.3390/polym17101385 | DOI Listing |
Comput Biol Med
September 2025
Postgraduate Program in Computing, Center for Technological Development, Federal University of Pelotas, Pelotas, 96010-610, Rio Grande do Sul, Brazil.
In the task of image classification for emotion recognition, facial expression data is commonly used. However, electrical brain signals generated by neural activity provide data with greater integrity. We can capture these signals non-invasively using electroencephalogram (EEG) recording devices.
View Article and Find Full Text PDFJ Neural Eng
September 2025
Eindhoven University of Technology, De Rondom 70, Eindhoven, 5612 AP, NETHERLANDS.
Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2025
Force prediction is crucial for functional rehabilitation of the upper limb. Surface electromyography (sEMG) signals play a pivotal role in muscle force studies, but its non-stationarity challenges the reliability of sEMG-driven models. This problem may be alleviated by fusion with electrical impedance myography (EIM), an active sensing technique incorporating tissue morphology information.
View Article and Find Full Text PDFDysphagia
September 2025
Department of Occupational Therapy, CNC Purun Hospital, Cheongju, Chungcheongbuk-do, Republic of Korea.
This study examined the effects of vibratory stimulation on swallowing-related muscle strength in patients with dysphagia due to stroke, using three types of stimulators and a systematic exercise program. This study was conducted in two stages. In Experiment 1, we examined the effects of three types of vibratory stimulation on the pressure of the tongue and lips (N = 23).
View Article and Find Full Text PDFPain Rep
October 2025
Physiology, Pharmacology and Neuroscience, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom.
Introduction: The dorsal horn (DH) of the spinal cord is physiologically immature at birth. Spinal excitability increases and wide dynamic range (WDR) neurons in lamina V have lowered activation thresholds and larger receptive field sizes.
Objective: The DH is composed of 5 laminae containing diverse interneuronal populations yet our understanding of the physiology of the DH is based on behavioural studies or extrapolation of single cell WDR recordings to the whole network.