A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effect of Flow Length on Pressure and Measurement of PEMFC Temperature by Using Thin-Film Thermocouples. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Based on the COMSOL simulation software (v.6.1), this paper systematically investigates the influence law of runner length on the velocity and pressure distribution of cathode and anode gas runners in proton exchange membrane fuel cells (PEMFCs), and experimentally verifies the measurement effect of thin-film thermocouples on the operating temperature of PEMFCs. The simulation results show that the maximum pressure of the cathode and anode increases nonlinearly with the increase in the runner length, while the velocity distribution remains stable; the shortening of the runners significantly reduces the friction loss along the flow path and optimizes the matching of the permeability of the porous medium. In addition, the NiCr/NiSi thin-film thermocouple prepared by magnetron sputtering exhibits high accuracy (Seebeck coefficient of 41.56 μV/°C) in static calibration and successfully captures the dynamic response characteristics of temperature in PEMFC operation. This study provides a theoretical basis and experimental support for the optimization of fuel cell flow channel design and temperature monitoring technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113881PMC
http://dx.doi.org/10.3390/mi16050535DOI Listing

Publication Analysis

Top Keywords

thin-film thermocouples
8
runner length
8
length velocity
8
cathode anode
8
flow length
4
length pressure
4
pressure measurement
4
measurement pemfc
4
temperature
4
pemfc temperature
4

Similar Publications