98%
921
2 minutes
20
The global rise in obesity and its associated metabolic disorders underscores the need for a deeper investigation into their underlying molecular mechanisms. While genetic factors are well-established contributors, recent research has increasingly focused on epigenetic regulators, particularly N6-methyladenosine (mA)-the most prevalent internal RNA modification in eukaryotes. This post-transcriptional modification plays a crucial role in RNA metabolism by regulating mRNA stability, splicing, nuclear export, and translation efficiency. Notably, emerging evidence implicates mA in both adipogenesis and metabolic dysregulation. In this review, we systematically examine three key dimensions: (1) the molecular mechanisms of mA modification, including writers, erasers, and readers, in obesity; (2) dysregulated mA patterns in obesity-related pathologies, such as type 2 diabetes (T2D), insulin resistance, metabolic dysfunction-associated steatotic liver disease (MASLD), and the glycolysis in cancer cells; and (3) the therapeutic potential of targeting mA and the regulators. By critically assessing recent advancements, we highlight mA's dual role as both a metabolic sensor and a disease modulator, offering novel insights into potential strategies for combating obesity-related metabolic syndromes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12111259 | PMC |
http://dx.doi.org/10.3390/genes16050498 | DOI Listing |
Crit Rev Food Sci Nutr
September 2025
Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Applied Chemistry, College of Science, China Agriculture University, Beijing 100091, China.
l-glufosinate has garnered increasing attention as an ideal herbicide for weed control in agriculture. However, the underlying racemization process of l-glufosinate in the aqueous phase remains unclear. In this work, we elucidated the racemization mechanisms through heating reactions and theoretical calculations.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
School of Science, RMIT University, Melbourne 3000, Australia.
Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Arencibia Clinic, San Sebastian, Spain.
Follicular unit extraction (FUE) has become a leading technique in hair transplantation, yet optimal management of the donor area remains a clinical challenge. This systematic review analyzes intraoperative and postoperative interventions applied to the donor area in FUE hair transplantation, with a focus on both clinical outcomes and the cellular and molecular mechanisms involved in tissue repair, inflammatory response, and regenerative processes. A comprehensive literature search was conducted in PubMed and EMBASE (January 2000-June 2025), identifying clinical studies that evaluated donor area treatments and reported outcomes related to healing, inflammation, infection, and patient satisfaction.
View Article and Find Full Text PDFBioDrugs
September 2025
Department of Nephrology, Instituto de Investigación Hospital "12 de Octubre" (imas12), Avda. De Córdoba s/n, 28041, Madrid, Spain.
Anti-CD20 monoclonal antibodies are gaining clinical relevance in the nephrology community due to their demonstrated efficacy and favorable safety profiles across short-, medium-, and long-term use. Initially developed for hematologic malignancies and multiple sclerosis, B-cell depletion therapies are now being investigated across a broader spectrum of autoimmune diseases, including glomerulopathies, both with and without associated podocytopathy. Recent advances have led to the development of novel anti-CD20 agents that are being used not only as potential alternatives to corticosteroids but also as adjunctive therapies in complex clinical settings.
View Article and Find Full Text PDF