A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Response Characteristics of Biological Soil Crusts Under Different Afforestation Measures in Alpine Sandy Land. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Desertification, which may lead to land degradation, is a significant global ecological issue. Biological soil crusts (BSCs) can play a role in sand fixation, carbon sequestration, and the improvement in soil functions in the ecological restoration of sandy soil. Therefore, elucidating the responses of BSCs to afforestation measures in alpine sandy areas is necessary to guide vegetation configuration in sandy ecosystems and enhance the effectiveness of sand fixation measures to prevent desertification. Herein, we determined the physicochemical properties and enzyme activities of bare sand (no crust) and algal and moss crusts collected from four sites subjected to different afforestation measures, including + (WLYY), + (SLWL), + (SHNT), and (NT80) plantations. High-throughput sequencing was also employed to analyze bacterial community structure in BSCs. The results revealed that fine particle contents in algal and moss crusts were higher than in bare sand. During the succession from bare sand to algae to moss crust, their enzymatic activities and water and nutrient contents tended to increase. And the diversity of bacterial communities changed little in the SLWL sample points, while the richness showed a trend of first decreasing and then increasing, but bacterial community richness and diversity first decreased and then increased at the other sites. Among the four measures, SLWL enhanced nutrient contents, enzyme activities, and bacterial community richness and diversity in BSCs relatively more effectively. Alkaline-hydrolyzable nitrogen and soil organic matter were the key factors impacting bacterial community structures in BSCs under the four afforestation measures. From the perspective of BSCs, the results can provide a reference for the prevention and control strategies of other alpine sandy soils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108680PMC
http://dx.doi.org/10.3390/biology14050532DOI Listing

Publication Analysis

Top Keywords

afforestation measures
16
bacterial community
16
alpine sandy
12
bare sand
12
biological soil
8
soil crusts
8
measures alpine
8
sand fixation
8
bscs afforestation
8
enzyme activities
8

Similar Publications