Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Tiller angle is a major component of rice plant architecture and affects planting density, photosynthetic efficiency, and ventilation. An extremely narrow or wide tiller angle adversely affects rice yield. Thus, a suitable tiller angle is considered a major factor to achieve ideal plant architecture in rice. In this study, we identified a major quantitative trait locus (QTL) that controls tiller angle and cloned the gene, TILLER ANGLE CONTROL 5 (TAC5), which encodes a NAC domain-containing transcription factor. Epigenetic variants at the CG site in the TAC5 promoter were stably inherited and associated with TAC5 mRNA expression. The TAC5 epiallele with a hypermethylated cytosine in the promoter exhibited an immediate response to gravistimulation with a simultaneous elevation of HO levels at the early stage of gravistimulation. Furthermore, TAC5 affected the expression patterns of transcripts involved in reactive oxygen species (ROS) generation and the response to excessive ROS. Population genetics and evolutionary analyses revealed that TAC5 alleles for the narrow tiller angle originated from a wild progenitor and were selected independently in temperate japonica and indica subspecies during domestication. Our results provide insight into the genetic mechanism of tiller angle control in rice and suggest potential applications of TAC5 in developing rice varieties with an ideal plant architecture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116977 | PMC |
http://dx.doi.org/10.1186/s12284-025-00794-4 | DOI Listing |