A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Finite-time analysis of epidemic reaction-diffusion models: Stability, synchronization, and numerical insights. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study presents an innovative approach to analyzing finite-time stability (FTS) and synchronization (FTSYN) in integer-order reaction-diffusion systems (RDs), particularly in the context of epidemiological modeling. By integrating Gronwall's inequality, Lyapunov functionals (LFs), and linear control strategies, a comprehensive framework is developed to address transient dynamics within finite time frames. The proposed methodology advances the theoretical understanding of FTS and FTSYN by addressing the relatively unexplored dynamics of spatially extended systems. MATLAB simulations validate the theoretical findings, demonstrating the effectiveness of the control schemes and their practical applicability in modeling real-world disease transmission. Integrating spatial diffusion and disease dynamics provides critical insights into the influence of parameters such as diffusion rates and mortality on system behavior. This work contributes a robust framework for enhancing the analysis and management of nonlinear systems, with significant implications for epidemiology and other fields requiring rapid convergence and synchronization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12178015PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0321132PLOS

Publication Analysis

Top Keywords

finite-time analysis
4
analysis epidemic
4
epidemic reaction-diffusion
4
reaction-diffusion models
4
models stability
4
stability synchronization
4
synchronization numerical
4
numerical insights
4
insights study
4
study presents
4

Similar Publications