A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effects of Maillard Reaction Products on Skeletal Muscle Cells: An In Vitro Study Using C2C12 Myotubes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: Maillard reaction products (MRPs) are known for their antioxidant properties; however, their effects on muscle cells remain unclear. This study aims to elucidate the effects of MRPs on muscle hypertrophy and atrophy in C2C12 myotubes. : MRPs were prepared by heating L-lysine and D-glucose, and their antioxidant activity was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Subsequently, mouse C2C12 myoblasts were cultured with MRPs until myotubes formed, and their diameters were measured to assess hypertrophic and atrophic changes. Akt phosphorylation was evaluated by Western blotting, and gene expression levels were analyzed via quantitative PCR. : The prepared MRPs exhibited high antioxidant activity in the DPPH radical scavenging assay. MRP treatment significantly increased the average myotube diameter by approximately 40% and enlarged the largest myotube diameter by up to 80%, potentially mediated by enhanced Akt phosphorylation. Under dexamethasone-induced atrophy, MRPs modestly attenuated the reduction in myotube diameter by approximately 20%, although the effect was not statistically significant, and did not significantly alter the fusion index either. Quantitative PCR analysis revealed that MRP treatment significantly reduced the mRNA expression of , a key regulator of antioxidant response, whereas it had no notable effects on the expression of genes related to myoblast proliferation (), differentiation (), hypertrophy (), atrophy ( and ), and oxidative stress (, , and ). : Our findings suggested that MRPs possess antioxidant activity and promote myotube hypertrophy via Akt signaling. This study highlighted the potential of MRPs as functional ingredients for promoting muscle health, though further in vivo studies are required to validate their physiological relevance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113465PMC
http://dx.doi.org/10.3390/metabo15050316DOI Listing

Publication Analysis

Top Keywords

antioxidant activity
12
myotube diameter
12
maillard reaction
8
reaction products
8
muscle cells
8
c2c12 myotubes
8
mrps
8
hypertrophy atrophy
8
dpph radical
8
radical scavenging
8

Similar Publications