98%
921
2 minutes
20
: Plant-derived secondary metabolites have long contributed to the discovery of novel therapeutic agents, especially in the treatment of parasitic and infectious diseases in developing countries. Metabolomics provides a systems-level approach to understanding plant biochemistry, enabling the discovery of secondary metabolites with pharmacological relevance. (), widely known for its rubber-producing capabilities, remains underexplored as a medicinal plant. Given the well-established therapeutic properties of and the emerging pharmacological profiles of related species, this study investigates the metabolic composition of roots and leaves to uncover bioactive compounds with antioxidant, anti-inflammatory, or hepatoprotective potential. Widely targeted metabolomics was conducted on 10-month-old field-grown Kultevarâ„¢ plants using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Samples were hand-harvested and preserved on dry ice to maintain biochemical integrity. Metabolite identification and classification were performed using the MWDB and KEGG databases. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to evaluate metabolic variation between tissues. A total of 1813 metabolites were identified, including flavonoids, alkaloids, lipids, amino acids, and phenolic compounds. Differential analysis revealed 964 significantly altered metabolites-609 downregulated and 355 upregulated in roots relative to leaves. Multivariate analysis confirmed clear tissue-specific metabolic profiles. KEGG pathway enrichment highlighted the involvement of flavonoid biosynthesis, amino acid metabolism, and lipid metabolism pathways, suggesting bioactive potential. This study presents the first comprehensive metabolic profile of , highlighting its potential value beyond rubber production. The detection of numerous therapeutic secondary metabolites supports its promise as a pharmaceutical and nutraceutical resource. Further functional validation of identified compounds is warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12112865 | PMC |
http://dx.doi.org/10.3390/metabo15050306 | DOI Listing |
Appl Biochem Biotechnol
September 2025
Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, 51452, Qassim, Saudi Arabia.
Viruses are minuscule entities that cannot survive independently without a Living host. Pathogenic viruses pose a significant threat to global health, resulting annually in the deaths of thousands of people. Recent studies indicate that medicinal plants may serve as an effective source of sustainable natural antiviral agents.
View Article and Find Full Text PDFNaturwissenschaften
September 2025
Colorado Water Center, Colorado State University, Fort Collins, CO, 80523, USA.
Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
Plants balance resource energy allocation between growth and immunity to ensure survival and reproduction under limited availability. This study reveals that rice cultivars with elevated sucrose levels boost resistance to the fungal pathogen Magnaporthe oryzae by accumulating the phytoalexin sakuranetin, regulated by the transcription factor STOREKEEPER (OsSTK). OsSTK binds to the promoter region of OsNOMT (Naringenin-7-O-Methyltransferase) to drive sakuranetin biosynthesis.
View Article and Find Full Text PDFFront Microbiol
August 2025
Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa.
Phytophthora root rot caused by the hemibiotrophic oomycete, is a major biotic hindrance in meeting the ever-increasing demand for avocados. In addition, the pathogen is a global menace to agriculture, horticulture and forestry. Phosphite trunk injections and foliar sprays remain the most effective chemical management strategy used in commercial avocado orchards against the pathogen.
View Article and Find Full Text PDFCurr Drug Discov Technol
September 2025
School of BioSciences and Technology, Vellore Institute of Technology, VIT University, Vellore, Tamil Nadu, India.
Introduction: Streptomyces species have complex genomes, including various biosynthetic gene clusters, frequently responsible for producing antibacterial and bioactive secondary metabolites under certain environmental conditions. To assess the impact of Magnesium and Iron on Streptomyces sp. VITGV100 secondary metabolite production and bioactivity, including molecular docking studies to predict their therapeutic potential.
View Article and Find Full Text PDF