A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

AMP-IBP5: A Multifunctional Antimicrobial Peptide for Advanced Wound Healing and Inflammatory Skin Disorders. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wound healing is a complex, multiphase process crucial for restoring tissue integrity and functionality after injury. Among the emerging therapeutic approaches, antimicrobial peptides (AMPs) have shown substantial promise because of their dual role in microbial defense and cellular modulation. AMP-IBP5, a novel AMP derived from insulin-like growth factor-binding protein 5, exhibits both antimicrobial and wound-healing properties, making it a promising therapeutic candidate. This peptide exhibits robust antimicrobial activity, augments keratinocyte proliferation, increases fibroblast migration, induces angiogenesis, and modulates the immune response. Mechanistically, AMP-IBP5 activates Mas-related G protein-coupled receptors and low-density lipoprotein receptor-related protein 1 (LRP1) in keratinocytes, stimulating IL-8 production and vascular endothelial growth factor expression to accelerate wound healing. This molecule also interacts with LRP1 in fibroblasts to increase cell migration and promote angiogenesis while mitigating inflammatory responses through targeted cytokine modulation. Preclinical studies have demonstrated its remarkable efficacy in promoting tissue repair in diabetic wounds and inflammatory skin conditions, including atopic dermatitis and psoriasis. This review delves into the broad therapeutic potential of AMP-IBP5 across dermatological applications, focusing on its intricate mechanisms of action, comparative advantages, and its path toward clinical and commercial application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12112235PMC
http://dx.doi.org/10.3390/jfb16050174DOI Listing

Publication Analysis

Top Keywords

wound healing
12
inflammatory skin
8
amp-ibp5
4
amp-ibp5 multifunctional
4
antimicrobial
4
multifunctional antimicrobial
4
antimicrobial peptide
4
peptide advanced
4
advanced wound
4
healing inflammatory
4

Similar Publications