Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article explores the transformative advances in soft machines, where biology, materials science, and engineering have converged. We discuss the remarkable adaptability and versatility of soft machines, whose designs draw inspiration from nature's elegant solutions. From the intricate movements of octopus tentacles to the resilience of an elephant's trunk, nature provides a wealth of inspiration for designing robots capable of navigating complex environments with grace and efficiency. Central to this advancement is the ongoing research into bioinspired materials, which serve as the building blocks for creating soft machines with lifelike behaviors and adaptive capabilities. By fostering collaboration and innovation, we can unlock new possibilities in soft machines, shaping a future where robots seamlessly integrate into and interact with the natural world, offering solutions to humanity's most pressing challenges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12112459PMC
http://dx.doi.org/10.3390/jfb16050158DOI Listing

Publication Analysis

Top Keywords

soft machines
20
machines
5
bioinspired soft
4
machines engineering
4
engineering nature's
4
nature's grace
4
grace future
4
future innovations
4
innovations article
4
article explores
4

Similar Publications

Soft wearable sensors offer promising potential for advanced diagnostics, therapeutics, and human-machine interfaces. Unlike conventional devices that are bulky and rigid, often compromising skin integrity, comfort, and user compliance, soft wearable sensors are flexible, conformable, and better suited to the dynamic skin surface. This improved mechanical integration enhances signal fidelity and device performance, while also enabling safer, more comfortable, and continuous physiological monitoring in real-world environments.

View Article and Find Full Text PDF

Developing intelligent robots with integrated sensing capabilities is critical for advanced manufacturing, medical robots, and embodied intelligence. Existing robotic sensing technologies are limited to recording of acceleration, driving torque, pressure feedback, and so on. Expanding and integrating with the multimodal sensors to mimic and even surpass the human feeling is substantially underdeveloped.

View Article and Find Full Text PDF

Microrobots are expected to push the boundaries of robotics by enabling navigation in confined and cluttered environments due to their sub-centimeter scale. However, most microrobots perform best only in the specific conditions for which they are designed and require complete redesign and fabrication to adapt to new tasks and environments. Here, fully 3D-printed modular microrobots capable of performing a broad range of tasks across diverse environments are introduced.

View Article and Find Full Text PDF

Background: Undifferentiated pleomorphic sarcoma (UPS) is a prevalent soft tissue sarcoma subtype associated with poor prognosis. Current prognostic tools lack the ability to incorporate personalized data for predicting survival. Machine learning (ML) offers a potential solution to enhance survival prediction accuracy.

View Article and Find Full Text PDF

Removal and inactivation of human coronavirus surrogates from hard and soft surfaces using disinfectant wipes.

Appl Environ Microbiol

September 2025

Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA.

Disinfectant wipes are widely used to reduce microbial contamination on surfaces, yet there is limited information on how viruses are physically removed or chemically inactivated during wiping. This study aimed to address this gap by comparing the contributions of physical removal and chemical inactivation to overall disinfection efficacy. Glass and vinyl coupons were contaminated with SARS-CoV-2 surrogates, bovine coronavirus (BCoV), or human coronavirus OC43, at an initial titer of 5-6 log TCID/surface with 5% soil load.

View Article and Find Full Text PDF