A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Epidermal microstructures on the paired fins of marine sculpins suggest new functional hypotheses supporting benthic station-holding. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Harsh environments, such as those with breaking waves and turbulent flows, present extreme challenges to organismal survival. Many animals exploiting these habitats possess adaptations to maintain position under dynamic flow conditions, such as reversible or permanent attachment systems. However, some station-holding fishes (e.g. sculpins) instead rely on morphological and behavioural modifications of their pectoral fins to increase friction with the substrate and combat drag. Despite epidermal microstructures on the fins of other benthic fishes, little exploration of pectoral fin surfaces at the microscopic scale has been undertaken in sculpins. Using scanning electron microscopy, we discovered microscopic, fibrillar projections contained within single cells on the ventral surfaces of the paired fin rays of two intertidal and two subtidal species of marine sculpins. In contrast to subtidal species, the intertidal species possessed epidermal cells with discrete channels separating groups of fibrillar projections. These features bear a striking resemblance to epidermal microstructures described in other fishes but have distinct morphological differences. We suggest the hypothesis that these previously overlooked features contribute to sculpin station-holding performance via enhanced mechanical interactions with the substrate, suggesting new taxa within which to explore potential mechanisms of underwater friction enhancement and adhesion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105794PMC
http://dx.doi.org/10.1098/rsos.241965DOI Listing

Publication Analysis

Top Keywords

epidermal microstructures
12
marine sculpins
8
fibrillar projections
8
subtidal species
8
epidermal
4
microstructures paired
4
paired fins
4
fins marine
4
sculpins
4
sculpins functional
4

Similar Publications