Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Single-cell technologies have revolutionized the understanding of cellular dynamics by allowing researchers to investigate individual cell responses under various conditions, such as comparing diseased versus healthy states. Many differential abundance methods have been developed in this field, however, the understanding of the gene signatures obtained from those methods is often incomplete, requiring the integration of cell type information and other biological factors to yield interpretable and meaningful results. To better interpret the gene signatures generated in the differential abundance analysis, iDAS is developed to classify the gene signatures into multiple categories. When applied to melanoma single-cell data with multiple cell states and treatment phenotypes, iDAS identified cell state- and treatment phenotype-specific gene signatures, as well as interaction effect-related gene signatures with meaningful biological interpretations. The iDAS model is further applied to a longitudinal study and spatially resolved omics data to demonstrate its versatility in different analytical contexts. These results demonstrate that the iDAS framework can effectively identify robust, cell-state specific gene signatures and is versatile enough to accommodate various study designs, including multi-factor longitudinal and spatially resolved data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202500572 | DOI Listing |