A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Interpretable Differential Abundance Signature (iDAS). | LitMetric

Interpretable Differential Abundance Signature (iDAS).

Small Methods

School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, 2006, Australia.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single-cell technologies have revolutionized the understanding of cellular dynamics by allowing researchers to investigate individual cell responses under various conditions, such as comparing diseased versus healthy states. Many differential abundance methods have been developed in this field, however, the understanding of the gene signatures obtained from those methods is often incomplete, requiring the integration of cell type information and other biological factors to yield interpretable and meaningful results. To better interpret the gene signatures generated in the differential abundance analysis, iDAS is developed to classify the gene signatures into multiple categories. When applied to melanoma single-cell data with multiple cell states and treatment phenotypes, iDAS identified cell state- and treatment phenotype-specific gene signatures, as well as interaction effect-related gene signatures with meaningful biological interpretations. The iDAS model is further applied to a longitudinal study and spatially resolved omics data to demonstrate its versatility in different analytical contexts. These results demonstrate that the iDAS framework can effectively identify robust, cell-state specific gene signatures and is versatile enough to accommodate various study designs, including multi-factor longitudinal and spatially resolved data.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202500572DOI Listing

Publication Analysis

Top Keywords

gene signatures
24
differential abundance
12
spatially resolved
8
gene
6
signatures
6
idas
5
interpretable differential
4
abundance signature
4
signature idas
4
idas single-cell
4

Similar Publications