A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Heat stress response in the cave nectar bat Eonycteris spelaea differs from that of Mus musculus. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bats as the only flying mammals incur a high metabolic cost during extended powered flight, which results in febrile-like temperatures without injury. Herein, we investigate the in vivo heat shock response (HSR) in the cave nectar bat Eonycteris spelaea. We demonstrate that E. spelaea exhibits enhanced physiological heat resistance, marked by reduced lethality, tissue damage and serum corticosterone levels in comparison to mice upon heat challenge. Additionally, E. spelaea did not exhibit an acute transcriptional response observed in heat stressed mice. Instead, bats displayed a delayed and non-canonical HSR that did not involve the activation of classical heat shock related genes and pathways. This altered response in E. spelaea is attributed to the elevated basal expression of heat shock proteins, which we demonstrate to be a common characteristic exhibited by bats from diverse sub-orders, families and diets. Taken together, we demonstrate a distinct HSR in E. spelaea relative to the conventional model organism, mouse, which may provide insights to understand novel regulatory targets and effector proteins that underlie the mammalian heat shock response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106831PMC
http://dx.doi.org/10.1038/s42003-025-08224-3DOI Listing

Publication Analysis

Top Keywords

heat shock
16
heat
8
cave nectar
8
nectar bat
8
bat eonycteris
8
eonycteris spelaea
8
shock response
8
spelaea
6
response
5
heat stress
4

Similar Publications