Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Bone implants play a critical role in the treatment of orthopedic diseases, however, conventional polymer or ceramic or metal implants possess various problems in enhancing bone repair and osteointegration. Recent years, the bioactive bone implants with biomimetic mechanical surface with natural extracellular matrix has shown promising role in reinforcing bone integration and regeneration. Biomedical hydrogels coating strategy has attracted much attention in bone implants modification, due to their adjustable surface biomechanics, bioactivities and drug release ability. Based on the principles of mechanical compatibility for biodegradable scaffold materials, it facilitates a "soft-hard synergy" in bone repair. This review provides an overview of recent advances in the field of hydrogel modification for bone implants, including the polysaccharide hydrogels (such as chitosan, alginate, and hyaluronic acid) and protein hydrogels (such as gelatin and collagen). Furthermore, this review explores the current understanding of the biomechanical mechanisms underlying bone formation in hydrogel-modified implants within the body, presents the challenges and future directions in this field. This study integrates engineering, developmental biology, and clinical perspectives, offering unique insights for the development of functional strategies for bone implants aimed at enhancing the treatment of orthopedic diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.144626 | DOI Listing |