A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optimizing Medication Querying Using Ontology-Driven Approach with OMOP: with an application to a large-scale COVID-19 EHR dataset. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Efficient querying for medication information in Electronic Health Record (EHR) datasets is crucial for effective patient care and clinical research. To address the complexity and data volume challenges involved in efficient medication information retrieval, we propose an ontology-driven medication query (ODMQ) optimization approach, leveraging the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). Integrating semantic ontology structures from the OMOP CDM can help enhance query accuracy and efficiency by broadening the scope of relevant medication terms like drug names, National Drug Codes, and generics, resulting in more comprehensive query outcomes than traditional methods. ODMQ significantly reduces manual search time and enhances query capabilities. We validate ODMQ's efficacy using real-world COVID-19 EHR data, demonstrating improved query performance. Through a comprehensive manual review, ODMQ ensures that expanded search terms are relevant to user inputs. It also includes an intuitive query interface and visualizes patient history for result validation and exploration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099415PMC

Publication Analysis

Top Keywords

covid-19 ehr
8
query
6
optimizing medication
4
medication querying
4
querying ontology-driven
4
ontology-driven approach
4
approach omop
4
omop application
4
application large-scale
4
large-scale covid-19
4

Similar Publications