98%
921
2 minutes
20
The ability to reduce sensory uncertainty by integrating information across different senses develops late in humans and depends on cross-modal, sensory experience during childhood and adolescence. While the dependence of audio-haptic integration on vision suggests cross-modal neural reorganization, evidence for such changes is lacking. Furthermore, little is known about the neural processes underlying audio-haptic integration even in sighted adults. Here, we examined electrophysiological correlates of audio-haptic integration in sighted adults (n = 29), non-sighted adults (n = 7), and sighted adolescents (n = 12) using a data-driven electrical neuroimaging approach. In sighted adults, optimal integration performance was predicted by topographical and super-additive strength modulations around 205-285 ms. Data from four individuals who went blind before the age of 8-9 years suggests that they achieved optimal integration via different, sub-additive mechanisms at earlier processing stages. Sighted adolescents showed no robust multisensory modulations. Late-blind adults, who did not show behavioral benefits of integration, demonstrated modulations at early latencies. Our findings suggest a critical period for the development of optimal audio-haptic integration dependent on visual experience around the late childhood and early adolescence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.pbr.2025.04.002 | DOI Listing |
Prog Brain Res
May 2025
Department of Psychology, University of Bath, Bath, United Kingdom; The Centre for the Analysis of Motion, Entertainment Research and Applications (CAMERA), Bath, United Kingdom; Bath Institute for the Augmented Human (IAH), Bath, United Kingdom.
The ability to reduce sensory uncertainty by integrating information across different senses develops late in humans and depends on cross-modal, sensory experience during childhood and adolescence. While the dependence of audio-haptic integration on vision suggests cross-modal neural reorganization, evidence for such changes is lacking. Furthermore, little is known about the neural processes underlying audio-haptic integration even in sighted adults.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Working memory (WM) plays a crucial role in helping individuals perform everyday activities and interact with the external environment. However, despite valuable insights into visual memory mechanisms, the multi-sensory aspects of WM have not been thoroughly investigated, especially in congenitally blind individuals, primarily due to a lack of proper technologies. This work presents an audio-haptic system to study the generation and recall of multi-sensory spatial representations in visually impaired and sighted individuals.
View Article and Find Full Text PDFSci Rep
March 2022
CNRS, PRISM, Aix-Marseille Univ, Marseille, France.
A surface texture is perceived through both the sound and vibrations produced while being explored by our fingers. Because of their common origin, both modalities have a strong influence on each other, particularly at above 60 Hz for which vibrotactile perception and pitch perception share common neural processes. However, whether the sensation of rhythm is shared between audio and haptic perception is still an open question.
View Article and Find Full Text PDFDev Sci
January 2021
Department of Psychology, University of Bath, London, UK.
Integrating different senses to reduce sensory uncertainty and increase perceptual precision can have an important compensatory function for individuals with visual impairment and blindness. However, how visual impairment and blindness impact the development of optimal multisensory integration in the remaining senses is currently unknown. Here we first examined how audio-haptic integration develops and changes across the life span in 92 sighted (blindfolded) individuals between 7 and 70 years of age.
View Article and Find Full Text PDFJ Neuroeng Rehabil
August 2018
Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 1, Zurich, 8092, Switzerland.
Background: Robots have been successfully applied in motor training during neurorehabilitation. As music is known to improve motor function and motivation in neurorehabilitation training, we aimed at integrating music creation into robotic-assisted motor therapy. We developed a virtual game-like environment with music for the arm therapy robot ARMin, containing four different motion training conditions: a condition promoting creativity (C+) and one not promoting creativity (C-), each in a condition with (V+) and without (V-) a visual display (i.
View Article and Find Full Text PDF