Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
As it flows through the collection system, maple sap is likely to be contaminated by microorganisms that colonize the tubing, potentially compromising its quality in terms of physicochemical properties, microbial load, and flavor. This study investigates the effect of microbial inoculation, as protective cultures, on the sap collection system to improve maple syrup quality. The research explored how inoculating collection tubing with specific bacterial strains influences the microbial composition, physicochemical properties (pH, Brix, conductivity, sugars, and organic acids content), and sensory attributes of both maple sap and syrup. Three strains selected for their capacity to produce biofilm on plastic tubing and their impact on maple syrup production from inoculated sap, sp. MSB2019, 100-P12-9, and ATCC 17926, were inoculated to independent sap collection system throughout two sugaring seasons. A non-inoculated system was included. sp. MSB2019 treatment resulted in a distinct bacterial composition in sap and impact the organoleptic properties of syrup by the end of second flow season, particularly the maple and overall flavor intensity scores were higher. While sap yield and primary microbial load remained unaffected, inoculation treatments corresponded to shifts in flavor attributes of the syrup. These findings indicate that inoculating sap collection systems with targeted strains can positively influence maple syrup quality, particularly in enhancing desirable flavor profiles, suggesting promising applications for syrup production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/cjm-2024-0225 | DOI Listing |