Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In recent years, cutting-edge technologies have been increasingly integrated into sports to assess physical and cognitive capacities. Virtual Reality (VR) technology has emerged as a powerful tool, offering an immersive and controlled scenario for examining cognitive functions. In light of the growing adoption of VR-systems, this study aimed to investigate the differences in visual attention and response time (RT) between athletes and non-athletes utilizing a VR-system and evaluate the discriminatory power of VR assessments towards the two groups. Sixty-one participants (Age: 22 ± 1.8years; athletes = 33, non-athletes = 28) underwent two visual attention evaluations through the Multiple Object Tracking (MOT) paradigm and three RT evaluations, all within a fully immersive VR environment. The visual attention assessments included the "MOT Assessment" (MOT), which did not have a primary target to select, and the "MOT, Primary Target Onset" (MOT-PT), which required selecting a primary target. The three RT evaluations included Continuous RT (RT-C), RT with Inter-Time between stimuli (RT-I), and Go No-Go RT (RT-GNG). In all RT assessments, participants aimed to touch the target that turned green in the shortest time as possible. In the RT-GNG test, participants responded to green targets by touching them with the hand controllers and refrained from touching red targets. No differences were found between athletes and non-athletes in visual attention tasks. However, athletes outperformed non-athletes in RT assessments (RT-C: 504.8 ± 45.9ms vs. 549.1 ± 45.6ms; p < 0.001. RT-I: 481.1 ± 44.9ms vs. 534.2 ± 58.6ms; p < 0.001. RT-GNG: 502.9 ± 38.8ms vs. 555.6 ± 57.8ms; p < 0.001). ROC curve analysis demonstrated moderate accuracy in differentiating athletes from non-athletes in RT assessments (RT-C: AUC = 0.75, p < 0.001; RT-I: AUC = 0.75, p < 0.001; RT-GNG: AUC = 0.80, p < 0.001). These findings underscore the significant role of RT in distinguishing athletes from non-athletes and highlight the discriminative potential of VR-systems as valuable tools in sports evaluation. Including RT assessments into traditional training regimens could offer new insights for evaluating athletic performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101641 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324159 | PLOS |