Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Icosahedrite, natural icosahedral AlCuFe, was discovered in a meteorite about 15 years ago. We have carried out a high-resolution X-ray diffraction study on a sample of this meteoritic mineral at the ESRF. The diffraction pattern turned out to be identical to an intermediate phase observed in synthetic i-AlCuFe during the transformation from the quasicrystalline state to a periodic rhombohedral phase. This particular natural AlCuFe grain is an icosahedral quasicrystal on which a modulation by six cosine waves propagating along the fivefold axes is superimposed, with a wavelength of about 20 nm and a polarization in the phason/perpendicular space. By examining the thermodynamic conditions for producing this modulated icosahedral phase at high pressure in the laboratory, we may gain insights into the formation process of the Khatyrka meteorite.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12224084 | PMC |
http://dx.doi.org/10.1107/S2052252525004130 | DOI Listing |