A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Structure and composition of arbuscular mycorrhizal fungal community associated with mango. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mango ( L.) is an important fruit crop with significant economic value in tropical and subtropical areas globally. Arbuscular mycorrhizal fungal (AMF) symbiosis is vital for mango trees growth, and the detailed understanding of various (a)biotic factors that influence AMF community composition is crucial for sustainable crop production. To date, there is little information available on how do different seasons and plant age influence the AMF community composition associated with mango. Using high-throughput amplicon sequencing, we examined AMF community diversity and composition in the rhizosphere of mango from two distinct orchards during spring (C_BY and C_YL) and autumn (Q_BY and Q_YL), which differed in age (10 and 28 years). The results revealed a notable variation in the number of observed species between two 28-years-old mango orchards (C_BY28 vs C_YL28 and Q_BY28 vs Q_YL28) during both the spring and autumn seasons. However, the comparison of 10-years-old and 28-years-old mangoes showed no significant shift in the diversity and richness of AMF. At the taxonomic level, was the absolute dominant genus in AMF community. The correlation analysis between species abundance and soil nutrients showed that the level of phosphorus, potassium and their available forms (AP, AK) significantly affect AMF community. Furthermore, the P, AP, and AK contents were found positively correlated with the dominant AMF molecular virtual species . These findings indicate the response characteristics of mango rhizosphere AMF community to soil nutrients, providing scientific basis for precise regulation of soil environment to improve mango tree growth and production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095367PMC
http://dx.doi.org/10.3389/fpls.2025.1578936DOI Listing

Publication Analysis

Top Keywords

amf community
24
amf
9
arbuscular mycorrhizal
8
mycorrhizal fungal
8
mango
8
associated mango
8
influence amf
8
community composition
8
soil nutrients
8
community
7

Similar Publications