Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanoplastics are generated from the fragmentation of microplastics under various environmental conditions in the atmosphere. These tiny pollutants are widespread and can enter the human body through the air we breathe and the food and water we consume. Understanding how nanoplastics interact with different membrane lipids is paramount to discerning the kind of threat they pose in terms of lung alveolar destabilization, impaired cell communication, cell wall disruption, diminished nutrient delivery, and neurotoxicity. In this research, we examined the interaction of polystyrene nanoplastics with phosphatidylcholine and palmitic acid at the aqueous interface to identify individual lipid response. Employing a comprehensive experimental approach that includes infrared-reflection absorption spectroscopy, Langmuir isotherms, and Brewster angle microscopy, we investigated chemical and physical changes of the lipid systems with nanoplastics dispersed within the water solution phase. Increasing the concentration of polystyrene nanoplastics in the solution phase led to enhanced interfacial activity; the nanoplastics were observed to incorporate into the lipid films driven by adsorption/complexation. The findings provide insights into the physical mechanisms through which nanoplastics permeate cellular membranes and bioaccumulate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5c04793DOI Listing

Publication Analysis

Top Keywords

palmitic acid
8
polystyrene nanoplastics
8
solution phase
8
nanoplastics
7
nanoplastic-induced disruption
4
disruption dppc
4
dppc palmitic
4
acid films
4
films implications
4
implications membrane
4

Similar Publications

Age characterization of donor based on fatty acid substances analysis in fingermarks.

Sci Justice

September 2025

Department of Forensic Science, People's Public Security University of China, Beijing 100038, China. Electronic address:

As a critical frontier in forensic science, the profiling of physical evidence characteristics has garnered substantial attention. This study employed gas chromatography-mass spectrometry (GC-MS) to investigate age-related differences in sebaceous fingermark fatty acid compositions. Fingermark samples from 80 volunteers were analyzed to characterize fatty acid profiles across different age groups.

View Article and Find Full Text PDF

Loss of hepatic ME1 ameliorates MASLD by Suppressing peroxisomal β-Oxidation and Activating Lipophagy/Lipolysis.

J Adv Res

September 2025

School of Public Health and Nursing, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China. Electronic address:

Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents an increasing global health problem in association with obesity and insulin resistance without approved pharmacotherapy. Previous studies revealed malic enzyme 1 (ME1) as a susceptibility gene for metabolic disorders in humans. However, the role and mechanisms of ME1 in regulating hepatic lipid metabolism remain largely unclear.

View Article and Find Full Text PDF

Cell wall invertase improves grain nutrition via regulating sugar and hormone metabolism gene expression in transgenic soybean.

Ann Bot

September 2025

The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, China 264025.

Background And Aims: Cell wall invertases have multiple roles in plant growth and development, yet their biological functions in seed oil production are still not understood.

Methods: In the present study, the Oryza sativa (rice) cell wall invertase gene OsGIF1 (GRAIN INCOMPLETE FILLING 1) was ectopically expressed in Glycine max (Soybean) and its functions in grain yield and seed nutrition was investigated.

Key Results: We found that constitutive expression of OsGIF1 significantly improved biomass production, grain yield and seed nutrition in transgenic plants.

View Article and Find Full Text PDF

Spirulina subsalsa powder produced from seawater-wastewater: a nutrient-rich and safe alternative for aquaculture feed.

Bioresour Technol

September 2025

School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute o

Elevated expense of chemical media spurs a shift to non-chemical media in microalgal cultivation, while ensuring the safety of the resulting powder poses a challenge. No previous studies have evaluated the safety and application of Spirulina subsalsa powder cultivated in monosodium glutamate wastewater (MSGW) and seawater. In this study, an analysis of basic nutritional components in Spirulina subsalsa powder indicated that this algal powder had high protein content, low lipid content and rich mineral content.

View Article and Find Full Text PDF

Age-related changes in cardiolipin profile and functional consequences of altered fatty acid supply.

Biochim Biophys Acta Mol Cell Biol Lipids

September 2025

Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1,

Cardiolipins (CLs) are primarily expressed in the inner mitochondrial membrane where they play essential roles in membrane architecture and mitochondrial functions. CLs have a unique structure characterized by four acyl chains with different stoichiometries such as chain length and degree of saturation. CL composition changes with disease and age, but it is largely unknown how dynamic changes affect mitochondrial function.

View Article and Find Full Text PDF