Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The progression of tumors is heavily influenced by mechanical properties of their microenvironment. In this work, we applied micropatterned models with varying distances and shapes to investigate the differences between metastatic MDA-MB-231 and non-metastatic MCF-7 breast cancer cells in reconfiguring extracellular matrix to promote cell migration induced by cell mechanics. Both cancer cells were able to rearrange type I collagen (COL) to form fibre threads, in which MDA-MB-231 consistently migrated more rapidly than MCF-7, ranging from geometrical square arrays with different spacings to complex polygonal models. MDA-MB-231 displayed higher capability of reorganizing fibre bundles at longer distance (800 ​μm). Further looking for differences in cell molecular mechanisms, siRNA knockdown inhibiting either integrin β1 or Piezo1 decreased fibre assembly and reduced the difference in COL remodeling and migration between two cancer cells. MDA-MB-231 showed inhibited migration with integrin knockdown, whereas scattering migration with Piezo1 knockdown, indicating cells losing directional mechanosensation. After inhibiting junctional E-cadherin with siRNA, MCF-7 cells migrated faster, resulting in reduced difference in comparison to MDA-MB-231 that didn't express E-cadherin. In summary, this work has explored the biomechanical differences between metastatic and non-metastatic breast cancer cells regarding COL fibre matrix remodeling and cell movements. The significant differences in E-cadherin expression in the two breast cancer cells had an effect on cell migrations. The results of this study provide research approaches for evaluating therapeutic effort on breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067905PMC
http://dx.doi.org/10.1016/j.mbm.2025.100113DOI Listing

Publication Analysis

Top Keywords

cancer cells
24
breast cancer
20
metastatic non-metastatic
8
non-metastatic breast
8
cells
8
type collagen
8
cell mechanics
8
differences metastatic
8
reduced difference
8
cancer
7

Similar Publications

Resolve and regulate: Alum nanoplatform coordinating STING availability and agonist delivery for enhanced anti-tumor immunotherapy.

Biomaterials

September 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.

View Article and Find Full Text PDF

Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.

View Article and Find Full Text PDF

Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.

View Article and Find Full Text PDF

Ubiquity of cancer across the tree of life yields opportunities to understand variation in cancer defences across species. Peto's paradox, the finding that large-bodied species do not suffer from more cancer despite having more cells at risk of oncogenic mutations compared to small species, can be explained if large size selects for better cancer defences. Since birds live longer than non-flying mammals of equivalent size, and are descendants of moderate-sized dinosaurs, we ask whether ancestral cancer defences are retained if body size shrinks in a lineage.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.

View Article and Find Full Text PDF