Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phosphate (P) fertilization impacts many rhizosphere processes, driving plant P use efficiency. However, less is known about the induced molecular and physiological root-rhizosphere traits in responses to polyphosphates (PolyP), particularly root transcriptome and belowground functional traits responsible for P acquisition. The present study aims to investigate physiological and transcriptomic belowground mechanisms explaining the enhanced durum wheat P acquisition under PolyP (PolyB and PolyC) supply. Root molecular traits were differentially expressed in response to PolyP, where PolyB induced upregulation of OGDH, MDH, and ENO, PAP21 and downregulation of PFK, and LDH genes. The modulation of gene expression can presumably explain the PolyP-induced changes in rhizosphere (root, rhizosphere soil, soil solution) acidification (pH decreased from 8 to 6.3) and acid phosphatase activities, which were concomitant with enhanced rhizosphere soil P availability and shoot Pi content (145% and 36% compared to OrthoP, respectively) along with changes in morphological and transcriptomic root (particularly, the upregulation of AUX1 and ABA transporter genes) traits. These findings provide novel insights that P acquisition from polyphosphates involves the coordinated regulation of genes governing root-rhizosphere processes and root development, ultimately enhancing wheat P acquisition.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.15629DOI Listing

Publication Analysis

Top Keywords

durum wheat
8
wheat acquisition
8
polyp polyb
8
rhizosphere soil
8
traits
5
acquisition
5
root
5
polyphosphate-induced changes
4
changes transcriptome
4
transcriptome root-functional
4

Similar Publications

Boron toxicity and salinity are major abiotic stress factors that cause significant yield losses, particularly in arid and semi-arid regions. Hyperaccumulator plants, such as Puccinella distans (Jacq.) Parl.

View Article and Find Full Text PDF

Wheat Maintains Stem Water Potential During Drought Stress Despite Declining Osmotic Potential.

Physiol Plant

September 2025

Faculty of Bioscience Engineering, Department of Plants and Crops, Laboratory of Plant Ecology, Ghent University, Ghent, Belgium.

Plant water potential is one of the most frequently measured variables of plant water status. Stem water potential, often approximated by wrapping the leaves, is assumed to be more stable and a better measure of drought stress than leaf water potential. In wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Varietal mixtures are a promising agro-ecological approach to stabilizing yields by reducing diseases. The effects of mixtures stem from modifications of epidemiological processes and underestimated plant-plant interactions, which could explain some of the paradoxical observations made in the field. However, the role of plant-plant interactions in modifying bread wheat and durum wheat susceptibility to Septoria tritici blotch remains to be elucidated.

View Article and Find Full Text PDF

Wheat blast caused by the fungus (MoT) pathotype is a catastrophic disease that threatens global food security. Lately, was discovered as a blast resistance gene in wheat genotype S615. However, while has recently been cloned, the precise underlying biochemical and molecular mechanism by which this gene confers resistance against MoT, remains to be fully elucidated.

View Article and Find Full Text PDF

In wheat allergy dependent on augmentation factors (WALDA), allergic reactions occur when wheat ingestion is combined with exercise or rarely other augmentation factors. We analyzed clinical characteristics and disease burden in recreationally active and trained individuals with WALDA diagnosed by oral challenge test. Clinical characteristics, serological data, and quality of life (QOL) questionnaires were analyzed and completed with follow-up interviews.

View Article and Find Full Text PDF