Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Intervertebral disc (IVD) degeneration (IDD) is the main contributor to chronic low back pain (LBP), the leading cause of disability worldwide, with a significant impact on the quality of life and health of common people. The etiology of IDD is still unclear, but it has been largely demonstrated the crucial role of inflammation and neuroinflammation in the pathological and degenerative cascade of events characterizing IVD degeneration.
Aim: In this study, we evaluated the potential therapeutic effect of pulsed electromagnetic field (PEMF) on human degenerated IVD (D-IVD) cells collected from patients who underwent discectomy.
Materials & Methods: The experimental plan to test our hypothesis, involved viability assay, reactive oxide species/nitrite production, gene, and protein expression. To recapitulate the pro-inflammatory disc microenvironment occurring during IDD, interleukin-1β (IL-1β) was administered to IVD cell culture. Then, to dissect the contribution of neuroinflammatory condition to immune component, microglial cells were co-cultured with IVD-conditioned media, and viability and expression of inflammatory markers were detected.
Results: Our data prove that in the IVD degenerative microenvironment, the increase of pro-inflammatory mediators, extracellular matrix degradative enzymes, and neuroinflammatory markers could be reduced by PEMF therapy, resulting in an overall improvement of degenerative condition and LBP.
Conclusion: These results represent an impactful novelty for the management of people suffering from LPB, in terms of symptom relief and reduction of social-health system burden.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086804 | PMC |
http://dx.doi.org/10.1002/jsp2.70077 | DOI Listing |