Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Therapeutic hypothermia (TH) significantly reduces mortality and morbidities in neonates with Neonatal Encephalopathy (NE). NE may result in neonatal death and multisystem organ impairment, including acute kidney injury (AKI). Our study aimed to utilize machine learning (ML) methods to predict the outcome of TH-treated NE neonates developing AKI and death during TH. In this retrospective multinational study, 1149 TH-treated NE neonates and 801 controls were included. AKI was classified using KDIGO neonatal criteria based on serum creatinine measurements. The ML model incorporated gestational age, birth weight, postnatal age, and serum creatinine values. The algorithm used all these covariates to predict one of five outcomes: survival with/without AKI, mortality with/without AKI, and hospitalized non-NE controls. The XGBoost model achieved an AUC of 95% and an accuracy of 75.08% in predicting AKI and survival, surpassing other ML classifiers that demonstrated accuracy levels ranging from 54% to 65%. To our knowledge this is the first ML model trained on multicenter, multinational data specifically aimed at predicting neonates' AKI, death, and survival within the first three days. Our ML scoring systems' code and user interface are freely available ( https://github.com/NUBagciLab/Therapeutic-Hypothermia-Outcome-Classification , https://thprediction.streamlit.app/ ). This tool has potential to support neonatologists to personalize therapies, and to optimize pharmacotherapy for renally cleared drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089479PMC
http://dx.doi.org/10.1038/s41598-025-01141-9DOI Listing

Publication Analysis

Top Keywords

machine learning
8
acute kidney
8
kidney injury
8
therapeutic hypothermia
8
th-treated neonates
8
aki death
8
serum creatinine
8
with/without aki
8
aki
7
learning based
4

Similar Publications

Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.

Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.

View Article and Find Full Text PDF

Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.

View Article and Find Full Text PDF

AI-enhanced predictive modeling for treatment duration and personalized treatment planning of cleft lip and palate therapy.

Int J Comput Assist Radiol Surg

September 2025

Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.

Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.

View Article and Find Full Text PDF

Myocarditis is an inflammation of heart tissue. Cardiovascular magnetic resonance imaging (CMR) has emerged as an important non-invasive imaging tool for diagnosing myocarditis, however, interpretation remains a challenge for novice physicians. Advancements in machine learning (ML) models have further improved diagnostic accuracy, demonstrating good performance.

View Article and Find Full Text PDF