Improving Light Stability of Nonfullerene Acceptor Inverted Organic Solar Cell by Incorporating a Mixed Nanocomposite Metal Oxide Electron Transporting Layer.

ACS Appl Electron Mater

Molecular Electronics and Photonics Research Unit, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol 3603, Cyprus.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present significant light stability enhancement of nonfullerene acceptor inverted organic photovoltaics by incorporating a mixed nanocomposite metal oxide electron transporting layer. Using an appropriate mixture of ZnO:SnO nanoparticles as an electron transporting layer in a PBDB-TF-T1 (T1):IT4F based organic solar cell device mitigates light induced photodegradation by lowering the defect formation at the active layer interface. We propose that the mixed metal oxide ETL act as hole scavengers that reduces the photocatalytic reaction of its surface. The optimized nanocomposite mixture of ZnO:SnO 10:90 (%V) provides higher light stability (ISOS-L2 protocol), prolonging the inverted OSCs lifetime (80% of the initial PCE, T80) by ∼16.5 times compared to the commonly used pristine ZnO electron transporting layer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080251PMC
http://dx.doi.org/10.1021/acsaelm.5c00201DOI Listing

Publication Analysis

Top Keywords

electron transporting
16
transporting layer
16
light stability
12
metal oxide
12
nonfullerene acceptor
8
acceptor inverted
8
inverted organic
8
organic solar
8
solar cell
8
incorporating mixed
8

Similar Publications

This study addresses historical uncertainties regarding morphological variation in the paraprocts of Tupiperla illiesi, a stonefly with a complex taxonomic history. We tested whether these variations represent phenotypic plasticity or distinct species using integrative taxonomy. Adult gripopterygids were collected from Estação Biológica de Boracéia utilizing Malaise and light traps.

View Article and Find Full Text PDF

Volume correlative light and electron microscopy (vCLEM) is a powerful imaging technique that enables the visualization of fluorescently labeled proteins within their ultrastructural context. Currently, vCLEM alignment relies on time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the three-dimensional alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques.

View Article and Find Full Text PDF

As a key mitochondrial Ca transporter, NCLX regulates intracellular Ca signalling and vital mitochondrial processes. The importance of NCLX in cardiac and nervous-system physiology is reflected by acute heart failure and neurodegenerative disorders caused by its malfunction. Despite substantial advances in the field, the transport mechanisms of NCLX remain unclear.

View Article and Find Full Text PDF

Bi-allelic deleterious variants in SNAPIN, which encodes a retrograde dynein adaptor, cause a prenatal-onset neurodevelopmental disorder.

Am J Hum Genet

September 2025

Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA. Electronic address: erid

Fetal brain anomalies identified by prenatal ultrasound and/or magnetic resonance imaging represent a considerable healthcare burden with ∼1-2/1,000 live births. To identify the underlying etiology, trio prenatal exome sequencing or genome sequencing (ES/GS) has emerged as a comprehensive diagnostic paradigm with a reported diagnostic rate up to ∼32%. Here, we report five unrelated families with six affected individuals that presented neuroanatomical, craniofacial, and skeletal anomalies, all harboring rare, bi-allelic deleterious variants in SNAPIN, which encodes SNARE-associated protein.

View Article and Find Full Text PDF

Submicron metal-bearing aerosols from an industrial hub of the North China Plain.

J Hazard Mater

September 2025

Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan. Electronic address:

Particulate matter emitted from heavy industries is a major source of atmospheric metals in the North China Plain (NCP). In this study, submicron particles (0.1-1.

View Article and Find Full Text PDF