Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigates the impact of hybridizing graphene oxide (GO) with zinc oxide (ZnO) at varying ratios (1:1 and 1:2) and concentrations (0.5, 0.75, 1 wt%) on the rheological, mechanical, hydrolytic degradation, and antibacterial properties of polycaprolactone (PCL) nanocomposites. GO, ZnO, and GO-ZnO nanohybrids were synthesized and characterized using TEM, AFM, Raman, and FT-IR spectroscopy to confirm their structure and composition. PCL/ZnO nanocomposites were fabricated via solution mixing. Mechanical testing revealed that 0.5 wt% GO-ZnO (1:1) significantly enhanced tensile strength, Young's modulus, and elongation at break, owing to strong interfacial adhesion and uniform dispersion within the PCL matrix. Rheological analysis indicated increased elasticity at 1 wt%, suggesting agglomeration and altered hydrodynamic interactions, while viscosity decreased, particularly at 0.75 wt%, due to sliding effects and accelerated thermal degradation. Hydrolytic degradation tests demonstrated that 0.75 wt% GO-ZnO composites lost 70.2% weight after 26 days in PBS, compared to negligible loss in pure PCL. Antibacterial activity improved by 50% with 0.5 wt% GO-ZnO incorporation. These results underscore PCL/GO-ZnO nanocomposites' enhanced mechanical strength, rapid degradation, and antibacterial efficacy, positioning them as promising candidates for bio-packaging applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086186PMC
http://dx.doi.org/10.1038/s41598-025-02087-8DOI Listing

Publication Analysis

Top Keywords

wt% go-zno
12
hydrolytic degradation
8
degradation antibacterial
8
075 wt%
8
go-zno
5
wt%
5
hybridization promising
4
promising approach
4
approach engineering
4
engineering desired
4

Similar Publications

This study investigates the impact of hybridizing graphene oxide (GO) with zinc oxide (ZnO) at varying ratios (1:1 and 1:2) and concentrations (0.5, 0.75, 1 wt%) on the rheological, mechanical, hydrolytic degradation, and antibacterial properties of polycaprolactone (PCL) nanocomposites.

View Article and Find Full Text PDF

This study was deeply focused on developing a novel CTS/GO/ZnO composite as an efficient adsorbent for CO adsorption process. To do so, design of experiment (DOE) was done based on RSM-BBD technique and according to the DOE runs, various CTS/GO/ZnO samples were synthesized with different GO loading (in the range of 0 wt% to 20 wt%) and different ZnO nanoparticle's loading (in the range of 0 wt% to 20 wt%). A volumetric adsorption setup was used to investigate the effect of temperature (in the range of 25-65 °C) and pressure (in the range of 1-9 bar) on the obtained samples CO uptake capability.

View Article and Find Full Text PDF

Incorporating two different nanoparticles in nanocomposite films is promising as their synergistic effects could significantly enhance polymer performance. Our previous work conferred the remarkable antimicrobial (AM) properties of the polylactic acid (PLA)-based film using optimal formulations of synergistic graphene oxide (GO)/zinc oxide (ZnO) nanocomposites. This study further explores the release profile of GO/ZnO nanocomposite and their impact on the antimicrobial properties.

View Article and Find Full Text PDF

The presence of heavy metal (HM) ions, such as lead, cadmium, and chromium in industrial wastewater discharge are major contaminants that pose a risk to human health. These HMs should separate from the wastewater to ensure the reuse of the discharged water in the process and mitigate their environmental impacts. The distinctive mechanical properties of 2D graphene oxide (GO), and the antifouling characteristics of metal oxides (ZnO/NiO) nanoparticles combined to produce composites supporting special features for wastewater treatment.

View Article and Find Full Text PDF

In this study, we aim to develop organic-inorganic hybrid nanofibers containing high moisture retention and good mechanical performance as an antimicrobial dressing platform. The main theme of this work focuses on several technical tasks including (a) the electrospinning process (ESP) to produce organic polyvinyl alcohol/sodium alginate (PVA/SA) nanofibers with an excellent diameter uniformity and fibrous orientation, (b) the fabrication of inorganic nanoparticles (NPs) as graphene oxide (GO) and ZnO NPs to be added to PVA/SA nanofibers for enhancement of the mechanical properties and an antibacterial function to , and then (c) the crosslinking process for PVA/SA/GO/ZnO hybrid nanofibers in glutaraldehyde (GA) vapor atmosphere to improve the hydrophilicity and moisture absorption of specimens. Our results clearly indicate that the uniformity nanofiber with 7 wt% PVA and 2 wt% SA condition demonstrates 199 ± 22 nm in diameter using an electrospinning precursor solution of 355 cP in viscosity by the ESP process.

View Article and Find Full Text PDF